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Transformation to Rotating
Coordinates, reply to Atwater

ATWATER' In his treatment of the transformation to rotaiing
coordinates arbitrarily applied a simple Lorentz transformation
io the periphery of a rotating disk having a symmetrical pattern
and obtained, by using a constant radius, an asymmetrica!
pattern. He concluded that the special theory of relativity
{§TR} may not be applied to the problem of the rotating disk.
E think that this conclusion may be unwarranted.

The equivalence principle, which locally equates an
accelerated frame of reference with a gravitational field, has
not only been a foundation of general relativity but has
unfortunately also clouded the division between the domains
of applicability of the special theory and the general theory of
relativity. The STR is here taken in the sense of Bergmann?;
that is it is extended to include non-inertial frames of reference
-vhich are covariantly characterized by their Riemann curvature
sensor being zero. Acceptance of this point of view gives an
unambiguous criterion for the applicability of the STR.

In terms of the non-ingriial reference system fixed to the
rotating disk, the metric may be written as

ds?=(c?—wirde* - 2oridedr—dz? — r2de? —drr {1}
¥t is straightforward explicitly to show that the curvature tensor
Re*bcd=0, as expected. The problem of the rotating disk is
then in the domain of the STR, in spite of the non-Euclidean
character of its spatial gecometry.

It should be noted that rigorousiy it is not possible to apply
a simpie Lorentz transformation to the periphery of a rotating
disk because the velocities at each point on the periphery are
ot collinear. (A series of non-collinear Lorentz transformations
is of course equivalent to a simple Lorentz transformation plus
a rotation, which is the origin of the well known Thomas
precession,}  Lorentz transformations are representable as
rolations in Minkowski space, and the problem of composing
non-collinear wvelocities is sguivaleni to that of spherical
rrigonometty on a sphere of radius . A Lorentz fransforma-
tion bacomes o geodesic arc on the surface of the sphere. A
vele® of Lorentz fransformations applied to a spaiial trihedral
the periphery of the rofating disk does not return the axes
the wihedral to their original orientations, but rotates them
rough an angle equal 1o the spherical excess of the geadssic
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polygon corresponding to the cycle. The trihe Iral precesses
with an angular velocity @y, where
wr =1~ a?rc* i —1lo )

and this is directed parallel to the angular velocity of the disk,

To ascertain what a material rotating disk actually looks
like with respect to an inertial frame of reference we must
examine not only these kinematical considerations, but also
questions of elasticity and dynamics*'*.
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