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This paper addresses the question of magnetic energy in mutiply connected domains. It is shown that
the magnetic energy must in general include a boundary term that is usually assumed to vanish. The
physical interpretation of this term is discussed in terms of de Rham’s theorems.
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INTRODUCTION

The discovery of high-temperature superconductors
has stimulated renewed interest in force-free magnetic-
field configurations [1,2]. Determining the magnetic en-
ergy of such configurations involves some subtleties that
at first may not be apparent. The question of the magnet-
ic energy contained in force-free fields was initially ad-
dressed by Chandrasekhar and Woltjer [3]. It was later
proved by Woltjer [4], and under somewhat less restric-
tive conditions by Moffatt [S], that the equations of non-
dissipative magnetohydrodynamics have the magnetic
helicity

I=[ A-Bav (1)

as a constant of the motion. The helicity has subsequent-
ly been identified with the asymptotic Hopf invariant [6].
Other such integrals have been discussed by Woltjer [7]
and Kruskal and Kulsrud [8]. In minimizing the total
magnetic energy with the constraint that helicity be con-
served, Woltjer introduced a constant a through the
method of Lagrangian multipliers, to show that the varia-
tional problem

st{|vx AP—a A-(VX A)}dV=0 %)
implies that the force-free magnetic-field equations
VXB=aB (3)

are satisfied. In this way, Woltjer succeeded in showing
that force-free fields with constant a correspond to the
lowest state of magnetic-field energy that a closed system
may attain [9]. Freedman [10] has addressed the issue of
a lower bound to the energy.

Taylor [11], in discussing the relaxation of a toroidal
plasma, pointed out that for the case where the field gen-
erates magnetic surfaces and where the conductivity is as-
sumed to be perfect, there is one invariant of the form
given by Eq. (1) for each surface. He then noted that the
magnetic field that results from minimizing the energy,
for all variations 8 A which leave this set of invariants
unchanged, satisfies

VXB=a(x)B, 4)

where a is now a function of position, but is constant on
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each of the magnetic surfaces. The latter assertion be-
comes apparent by taking the divergence of Eq. (4) to ob-
tain B:Va=0, which shows that a is a constant on a field
line. If the field line is constrained to a surface, a is con-
stant on that surface [12].

Magnetic fields do not, in general, form magnetic sur-
faces. Such surfaces arise in magnetohydrostatic equili-
bria and for some highly symmetric field configurations.
When the field does form magnetic surfaces, Cowling’s
theorem [13] tells us that they cannot be simply connect-
ed. In addition, there is a theorem by Hopf [14] that
states that the torus and the Klein bottle are the only
smooth, compact, connected surfaces without boundary
that can have a nonsingular (nowhere vanishing) vector
field. Thus, nonsingular magnetic surfaces can be expect-
ed to have the topology of nested tori [8]. Arnold [6] has
shown that if B is a divergence-free field on a three-
dimensional closed orientable Riemannian manifold
which satisfies BX(V XB)=V41, then the field lines of B
and V XB lie on tori that are given by ¥y=const. When
V¢=0 (the force-free case), the field lines will also lie on
two-dimensional tori, provided the field is nonsingular
and «a is not constant. If a is constant, the field can have
more complicated topologies [15].

This paper examines the question of magnetic-field en-
ergy for nonsingular toroidal configurations in the ap-
proximation of ideal, static magnetohydrodyamics. The
discussion makes use of de Rham’s first theorem, an ex-
position of which can be found in Flanders [16] and Fenn
[17]. An extensive discussion of the content of de
Rham’s theorems has also been given by Blank,
Friedrichs, and Grad [18].

MAGNETIC ENERGY

The total magnetic-field energy associated with
currents J in a volume V' is given by

E=%fVJ-AdV. 5)

Taking the dot product of Eq. (4), written in terms of H,
with A and integrating results in [19]

E=1[ H(VXA)dV+1i[ (HXA)-dS

=4[ aAHdV, ©
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where S is the bounding surface of the volume V. It is as-
sumed here, and throughout the remainder of this paper,
that B=uy,H. The first equality in Eq. (6) is true in gen-
eral, while the second is true for force-free fields. For
constant-a fields, Yang [20] has noted that the magnetic
energy can be written as_the product of @ and the total
magnetic helicity. If a is not assumed to be constant,
such a simple decomposition is not possible.

From Eq. (6), it can be seen that both the volume and
the surface integrals contribute to the magnetic energy.
The usual textbook discussion of the surface integral in
Eq. (6) takes the bounding surface of the configuration to
be at infinity. Because the source currents are assumed to
occupy a finite, closed volume and since H falls off at
least as fast as » "2 and A as r !, it is argued that the in-
tegral vanishes as ! at a minimum. However, if S is a
magnetic surface of finite dimension, this argument does
not hold and the integral cannot be ignored. That this in-
tegral must play a role in the energy of finite force-free
fields has been noted by Reiman [21], who pointed out
that if account is not taken of this boundary term, one
obtains an incorrect expression for the energy of force-
free state. If the currents are confined to a volume V.,
and if the whole space V , is simply connected, the physi-
cal interpretation of the boundary term is readily under-
stood by observing that it is identically equal to

[, _ BHAV
V.-V,
transformed by Stokes’ theorem to a surface integral; it is
the energy in the field exterior to V. due to currents
within V.

If the domain is simply connected, the integrals of Eq.
(6) are gauge invariant, as would be expected since the en-
ergy must be gauge invariant. This can be seen as fol-
lows: (1) Consider first the surface integral. Under the
transformation A— A+ VY, the integral associated with
Vyx is

[ (HXVy)dS= [ V-(HXVy)dV
N 14
= [ v-amav=[ x3fds=o, )

where V-J=0 has been used. The last equality is true in
general if S bounds the currents and is true for force-free
fields in particular since J=aH lies in the magnetic sur-
face S. (2) The integral on the right-hand side of Eq. (6)
is also gauge invariant since under a gauge transforma-
tion, the integral associated with Vy is

fVaVX-H dv= fVV-(axH)dV= fsa)(H-n nS=0.
(8)

Note that in simply connected domains, the helicity is
also invariant under a gauge transformation provided
H-4=0.

In a multiply connected domain (for example, the inte-
rior of a toroid), the meaning of the terms involving A in
Eq. (6) is not immediately clear since, under a gauge
transformation, the function ) is not necessarily single
valued. Yet, for the energy to be well defined in such
domains, it must be gauge invariant. The role of mul-
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tivalued gauge transformations will be discussed later in
terms of two physical examples: a simple ring current and
a force-free configuration, both in a toroidal domain.

To discuss the magnetic-field energy in multiply con-
nected domains, it will be useful to recast Egs. (5) and (6)
into the language of differential forms in three-
dimensional Euclidean space. This will facilitate contact
being made with de Rham’s theorems. To that end, re-
place the vector potential A with a 1-form A. Then the
magnetic field B is given by the 2-form B=dA4
(equivalent to the local statement B=V X A). Taking
the exterior derivative of B shows that B is a closed 2-
form, i.e., dB =0 (corresponding to V-B=0). B is also lo-
cally an exact form since B =d A. The question of the ex-
istence of A globally is the subject of de Rham’s
theorems.

Expressing Eqgs. (5) and (6) in the language of
differential forms also requires the introduction of the
Hodge * or duality operator. Here, since the application
is to three-dimensional space, the duality operator maps
p-forms onto (3—p)-forms. Note that this operator has
the property that the subspace of % orthogonal to that
of w, where ® is a p-form. Although the % operator is
defined locally, it is independent of local coordinates, but
does depend on the existence of an inner product and the
orientation of the space.

The helicity, Eq. (1), is now readily expressed in terms
of differential forms as

I=fVA AB . 9)

If the flux across every closed surface in the domain V'
vanishes, this is the Hopf invariant mentioned in the In-
troduction. If the current J is defined as the 1-form J, the
2-form *J can be used to write the differential form of
Ampere’s circuital law, uo*J =d(* B). The magnetic en-
ergy, Eq. (5), can be written as

/,L0E=%fVA Ad(xB) . (10)

Using Stokes’ theorem and the force-free relation

d(xB)=aB, Eq. (6) becomes
pOE=%fVB A *B—%faVA A+B=1[ adAB.
(11)
Notice that if the inner product on p-forms is defined as
(a,B)=f al*B, (12)
v
the boundary term can be written as [22]

[, AN*dA=(B,B)—(4,5d4) . (13)

This shows that unless the boundary term vanishes, d and
8 [the codifferential operator given in three-dimensional
space by 8w =(—1)*d(*w), o being a p-form] will not
be adjoint operators, as is usually the case for closed
manifolds. Note that the codifferential operator can be
used to write the differential form of Ampere’s circuital
law as pgJ =8B since * ¥ =+1 applied to 1-forms. The
inner product (B, B ) is positive definite, and in terms of
classical notation is [ ,B*dV.
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de RHAM’S THEOREMS

de Rham’s theorems are expressed here in the form
given by Flanders [16]. If w is a closed p-form, for each
p-cycle [23] z, one can define a “period” of w by fza). The
period only depends on the homology class of z. If zis a
boundary, then by Stokes’ theorem the period vanishes.
Therefore, if 3;a;,z; =boundary, then ¥ ;a; fziw=0. de

Rham’s first and second theorems are then expressible as
follows: (i) A closed p-form is exact if and only if all its
periods vanish, and (ii) if each p-cycle z is assigned a
number per (z), there is a closed p-form w which has the
assigned periods fzco=per(z) for each p-cycle z [subject
to the consistency relation 3;a;per(z;)=0 if 3,q;z; is a
boundary].

If o is set equal to the 2-form B, the substance of de
Rham’s first theorem (the one that will be most used
here) is as follows: Since the magnetic field B is
solenoidal (dB=0), a vector potential A4 exists locally
such that B=d 4, i.e., B is locally exact. For A4 to exist
globally [24], the closed surface periods fz B must vanish
(z being a 2-cycle). The nonexistence of magnetic mono-
poles guarantees that this will always be the case.

Even though the closed-surface periods vanish, it is in-
teresting to supplement the solenoidal condition for B
with the boundary condition that the normal component
of B vanish [25]. While this condition alone would imply
that the closed-surface periods vanish (even if magnetic
monopoles existed), it also allows one to use the concept
of relative homology to define open-surface periods, in
terms of the homology modulo the boundary [26], which
can be interpreted as fluxes. If = and 2’ are such that
2'~Z (moddD ), where 3D is the boundary of the domain
D, then £—Z' can be made into a closed bounding sur-
face by the addition of part of the boundary. The in-
tegral [;B-NdZ= [(B is then a period. Interestingly
enough, the converse is also true, as pointed out by
Blank, Friedrichs, and Grad [18]. If the open-surface in-
tegrals sz only depend on the homology class (if they
are periods), then the closed-surface periods of B vanish
and the normal component of B also vanishes on the
boundary.

It is also possible to define the homology of open arcs
modulo the boundary. Two points are said to be homolo-
gous if they bound an arc. If these points are on the
boundary of D, then two arcs, C and C’ contained in D,
are said to be homologous modulo the boundary,
C~C’'(moddD), if their O-dimensional boundaries are
homologous in D. Thus, when C ~C’(moddD ), it is pos-
sible to complete C—C’ to a closed, bounding curve in D
by adding arcs on the boundary [27].

In what follows, various integrals involving the scalar
or vector potential will be evaluated by introducing cuts
on open surfaces = or along open arcs.

INTERPRETATION OF THE BOUNDARY TERM

With reference to Fig. 1, let the domain D be the exte-
rior of a toroidal surface S, bounded by S, and S,. As-
sume that there exists a 1-form X such that dX =0 and a
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FIG. 1. The domain D exterior to a toroidal surface S,
bounded by S, and S,. The open surface 2 and the open arc C
are taken as cuts to make ¢ and A4, respectively, single valued.

2-form Y such that dY=0. Then there exist locally a O-
form (function) ¢ such that X =d¢ and a 1-form A4 such
that Y=d A. ¢ can be made single valued by taking the
open surface = as a cut. Consider the integral f pXANY.

Using the relationship
d(¢Y)=dpNY+¢dY , (14)
this integral can be written as
= = + Y, 15
fDX/\Y fDd(¢Y) faDqu f2[¢] (15)

where [¢]= f dé= f X is the jump across =. This
jump is indeperl;dent of the path I' chosen provided T cir-
cles the torus. To see this, note that the two paths I" and
I'" of Fig. 1 can be connected along both sides of the
open-surface cut 2 (as indicated). If one integrates along
the closed path consisting of these connections and I" and
I'’, the contributions of the connections on either side of
2 will cancel. Stokes’ theorem then allows the integral
over this closed path to be replaced by the integral of dX
over the enclosed surface bounded by I'—TI"', which van-
ishes since dX =0. Thus, taking account of the direction
of integration along I' and I'’, the integral over T is equal
to that over I'" and [¢] is independent of the choice of T’
showing that [¢] is constant on 2. This means [#] can
be removed from under the integral and Eq. (15) can be
written as

[ xany=[ ¢v+[x[v. (16)

Alternatively, one can introduce the open are C (con-
necting the component of D inside the torus with that
outside S;) as a cut so as to make A single valued. Then,
instead of Eq. (14), the relation

d(ANX)=dANX— A NdX (17)

can be used to write
XANY= X)= .
JXAY=[ d(anx) [, AnNx+[ anx

(18)
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Here, the arc C has been enclosed in a tube T and the
symbol = has been used to indicate that small elements
of surface, which will vanish as the diameter of the tube
is allowed to approach C in the limit, have been ignored.
Combining Egs. (16) and (18),

faDA /\X%faD¢Y+ ersz—fTA AX . (19

Evaluating the last integral of the latter expression is
most readily accomplished by transforming to classical
notation. The integrand Z AX becomes A XX-ndT,
where dT is the element of area on the tube oriented
along the normal 1.

Noting that the tube is the topological product of a cir-
cle, L (with tangent dl) and the cut C (with tangent dl’),
the element of surface area can be written as
dT=dl Xdl'. The integrand is then

(AXX)(dIXdl')=(A-dI)(X-dl')—(A-dl'}(X-dl) .

The space D, interior to the toroid, is singly connected by
virtue of the cut =, while the cut C connects the two
components of D. Then, by Stokes’ theorem, the last
term can be seen to vanish since VXX =0. Consider the
remaining two terms in the limit that T—C. Stokes’
theorem can again be used to transform the A-dl term,
and because X approaches a value depending only on its
limiting position on C, the integral can be written as the
product

J (AxX)fdT=[ v@ds [ X-dl'. (20)
Thus, Eq. (19) can be written as
J anx=[ sy+[x[y-[ v[x. @1

The general form of Eq. (21), not yet written in terms
of magnetic fields and potentials, can now be used in the
case that dD is a magnetic surface. Let 4 now be
identified with the vector potential 1-form. If the current
vanishes outside the torus, an appropriate choice for X
and Y is X =B and Y=B. These are consistent choices
since dX =d(*B)=uy*J =0 and dY =0 in D. With the
condition that the normal component of B vanish on 9D,
the open-surface integral f sB is a period which can be
interpreted as a flux, and Eq. (21) becomes

J AN«B=[ *B [ B=pl,®, (22)

where I, is the azimuthal current inside the torus (out-
side the domain D) and & is the flux through the surface
3. Since the current vanishes in the domain D, Stokes’
theorem implies that

) A/\*B=f BAxB={(B,B) . (23)
aD D

Equation (22) can be used to interpret the boundary
term of Eq. (11) in the case that the volume of integration
is the interior of a torus. Attention, however, must be
paid to the orientation of the boundary surface. To ar-
rive at Egs. (22) and (23), the domain D was chosen to be
the exterior of the toroidal surface; on the other hand,
the volume of integration in Eq. (11) is now assumed to
be the interior of the torus. A surface element on the

GERALD E. MARSH 46

boundary thus has opposite orientation for the two cases,
which will introduce a minus sign when substituting the
value of the integral into Eq. (11).

Thus, not surprisingly, the total energy as expressed by
Eq. (11) is the sum of the energy interior to the torus,
where currents may be present, and that in the field exte-
rior to the torus, represented by the boundary term.
Since it has been assumed that there are no currents in
the domain exterior to the torus, the field in this region
must be due to currents within the torus. Currents out-
side S do not contribute to the magnetic energy in the
space bounded by S, + S, because of the boundary condi-
tions imposed and the fact that the space outside S is
simply connected. If the boundary configuration were
different, so that the space outside S, was not simply con-
nected (for example, if S; was a second torus so that S
was nested within it), then there could be additional con-
tributions to the field energy between the toroids due to
currents exterior to S.

PHYSICAL EXAMPLES

Ring current in a toroidal domain

Consider a current I, in a perfectly conducting
toroidal domain D. The energy of the configuration can
be written in terms of the currents in the domain as

E=%fDA/\*J. (24)

For consistency, it is necessary that A= [see Fig.
r 2, g

2(b)]. The meaning of a gauge transformation
A'= A +dy, with Yy a multivalued function, will be dis-
cussed shortly. Using Stokes’ theorem, Eq. (24) becomes

p0E=%fDB/\*B——-2‘-faDA A*B . (25)

The first term is clearly the energy of the field within the
toroidal conductor, while Eq. (22) and the discussion fol-
lowing Eq. (23) allow the boundary term to be written as

_faDA /\*B=fr2*B f}:zB =pol4®s, - (26)

To see this, note that the first integral in the product, us-
ing Stokes’ theorem, is

frz*B=fz]d(*B)=y0le*J=/,LOI¢. 27

Thus, the energy is the sum of the field energy within
the current carrying toroidal domain and the energy in
the field exterior to the domain due to currents within D,
the latter energy being represented by the boundary term.

A “multiturn coil” having n “turns” would have I
traversed n times. This is equivalent to performing a
gauge transformation 4'= A4 +dy in Eq. (24). This can
be seen by considering the dy term, _[;)dx/\ *J, in such a
transformation. Because d is a closed 1-form and *J a
closed 2-form, the discussion preceding Eq. (16) allows
this term to be written as

frld)(le*JZIqﬁfr,]d)( :
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[The fact that [, x(*J)=0 has been used.] Now the
jump in the function Y across X, [x]= f dX, must
1

yield ‘2I>22 for each “turn” of the coil. Thus, the energy in
the field exterior to the toroid would be nI ¢<I>22. A gauge

transformation corresponds to multiplying the energy in
the field by some integer n. If one constructs the simply
connected, universal covering space D of the domain D
interior to the torus, n is essentially the winding number,
uniquely determined by the path homotopy class of T'.
In general, gauge transformations in D affect the physics
in D.

Note that because the normal component of B vanishes
on dD, f zzB is an open-surface period. The second of de

Rham’s theorems then guarantees the existence of a B ex-
terior to D such that

f223=fF,A=c1>22. (28)
1

However, while the existence of B is assured, its unique-
ness is not; in this connection, see the comments at the
end of the last section.

Application to force-free fields

Perhaps the most well-known solution to the cylindri-
cally symmetric, force-free magnetic-field equations with
constant « is the Lundquist [28] solution given by

H=A,J (ar)$+ AyJylar)Z, (29)

where A is an arbitrary constant.

If one chooses to apply this solution in a cylindrical re-
gion of radius a, such that Jy(aa)=0, this solution
matches smoothly —no surface currents are required —to
an external field given by {0,(a4,/r)J (aa),0}, which
only has a nonvanishing ¢ component. Since there is a
nonvanishing field outside the cylindrical boundary at
r=a, it is clear that the surface integral of the last section
cannot vanish. Nevertheless, consider the following in-
correct argument: Since a is a constant, VXB=aB can
be written as VX(VX A—a A)=0. This means that
B=a A and the

surface integral vanishes since

HX A=0.
Why is this argument incorrect? There are two
reasons: (1) Unless z=— o and z=+ « are identified,

there must be additional return currents outside the cy-
lindrical domain. (2) Assume that henceforth this
identification is made: The issue of return currents is el-
iminated but the solution will have the topology of a
torus [29]. Since the equation VX (VX A—a A)=0 actu-
ally implies that B=a A+Vy, the statement that
HX A=0 is not gauge invariant because Y is a mul-
tivalued function in such a multiply connected domain
[30].

The force-free relation d(*B)=ad A, with a being a
constant, implies that * B=a A4 +dy. The boundary
term is then given by (see Fig. 2)

[, an+B=[ Andx=[ dxB)
=fanB+le[)(]B , (30
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where the fact that
d(ANdx)=B ANdxy=d(xB)

has been used. The first term on the right-hand side of
Eq. (30) vanishes and, by the argument following Eq. (15),
[x] can be taken out of the second integral (note the com-
ment on finite integrals in [29]). Thus,

faDA/\*B=fr]d)( ;B (31)

Using the force-free relation, the integral over X, be-
comes

_1 _, e
leB—Zled(*B)——po > (32)

where I is the azimuthal current. Since [x] is constant

on =, I'; may be chosen in D, bounding 2, (shown as

I} in Fig. 2). Choose A’ such that fr,A’=CI>,_2. Then
1

in the interior domain D, since * B =a A +d, the objec-
tive will be to find dy such that [ , 4= [, 4'. Now,
1 1

A=(1/a)(*B—dy), so that

1 1
A . B _——_ .
fr’l a fr’l* a fr'ldx 33
The first term on the right-hand side vanishes since
B= J=0.
fr;* Ko fiz* 0

Thus, the requirement that [ pA= [ A" implies, with
1 1
the choice Yy — —Y;, that

dy=ads .
) Ax=ads, (34)
Equations (32) and (34) then give for the boundary term,
AN«B=p,d ,
i) L ANKB=pe®s 1, (35)

which will vanish only if the flux through =, vanishes,
ie, 1,=0. Thus, the interpretation of this term for
force-free fields is consistent with that given in the previ-
ous section: it represents the energy in the field exterior
to aD.

For the Lundquist solution, the component of B nor-
mal to 9D vanishes, implying that A is a local surface
gradient [31], 4 =d ). Since A4 is a closed 1-form on dD,
by de Rham’s first theorem, A4 will be exact (y will be sin-
gle valued) if f 2, 4=0, where z; are the independent 1-

cycles on 9D, i.e., Iif fr,lA = frzA =0, or
[,B= [z B=0. This condition is equivalent to 1,=0,
and can be met with a nonvanishing field in the interior

of the torus if ary, where ry is the minor radius of the
torus, is a zero of J,(ar). This can be seen from

_ AO Po _ AO _
I¢—21r—a—f0 Jo(p)pdp——Z‘n'-;—poJ‘(po), p=ar

(36)

or by simply noting that the :ﬁ component of the field
given by Eq. (29) has a zero at J,(ar)=0 and that by
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H = Ap{0, Jq (ar), Jg (ar) }

Jo(ca) = H, = 0 on the cyclinder r=a

(@
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oD

(b)

FIG. 2. The Lundquist solution can be given the topology of a torus by identifying z=1 o (finite integrals on I'; and 2, can be
had by identifying z =+ rather than z=+ o). The domain D where the force-free condition holds is interior to the torus.

Ampere’s circuital law, the current density integrated
over the enclosed area must vanish.

SUMMARY

In general, the energy contained in force-free magnetic
fields is given by the right-hand side of Eq. (11). In the
case that a is a constant, the energy is the product of a
and the helicity. Whether « is constant or not, when the
field forms toroidal magnetic surfaces, the energy can be
written as the sum of the usual expression for magnetic
energy and a generally nonvanishing boundary term
f ay A A\ *B. Physically, for a toroidal domain V whose

exterior is current free, this term represents the energy in
the magnetic field exterior to ¥ due to currents within the
domain. The boundary term can vanish for toroidal
force-free magnetic fields even though the field is nonzero
inV.
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