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ABSTRACT 

 
The null Killing surfaces for the Kerr-Newman solution to the Einstein field 
equations is discussed, derived and plotted.  For some parameters of the mass 
m, the angular momentum per unit mass a, and the charge e, the plots show 
some very unusual features.   
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The Kerr-Newman Metric 
The Kerr-Newman metric in Kerr-Schild coordinates is given by 

 

𝑑𝑠! = 𝑑𝑥! + 𝑑𝑦! + 𝑑𝑧! − 𝑑𝑡! +
2𝑚𝜌" − 𝑒!𝜌!

𝜌# + 𝑎!𝑧! /𝑘$𝑑𝑥$1
!, 

             (1) 

where e is the charge, m the mass, a is the angular momentum per unit mass, and the surfaces 

of constant r are confocal ellipsoids of revolution, the equation for which is derived from the 

defining relations for oblate spheroidal coordinates: 

 

𝑥 = 𝑎	𝑐𝑜𝑠ℎ𝜉	𝑐𝑜𝑠𝜂	𝑐𝑜𝑠𝜙	 

𝑦 = 𝑎	𝑐𝑜𝑠ℎ𝜉	𝑐𝑜𝑠𝜂	𝑠𝑖𝑛𝜙	 

𝑧 = 𝑎	𝑠𝑖𝑛ℎ𝜉	𝑠𝑖𝑛𝜂.											 

             (2) 

The null vector field 𝑘$ is given by 

 

𝑘$𝑑𝑥$ = 𝑑𝑡 +
𝑧
𝜌 𝑑𝑧 +

𝜌
𝜌! + 𝑎!	

(𝑥𝑑𝑥 + 𝑦𝑑𝑦) +
𝑎

𝜌! + 𝑎!	
(𝑥𝑑𝑦 − 𝑦𝑑𝑥). 

             (3) 

 

 Note that if 𝜌 = 𝑒!/2𝑚 the metric of Eq. (1) becomes that of 4-dimensional Euclidean 

space.  The metric given by Eq. (1) has a ring singularity located at 𝑅 ≔ (𝑥! + 𝑦!)
!
" = 𝑎 and 

z = 0 (where r = 0).  The definition of R is important for what follows. 

 

 From Eqs. (2) one can then compute  

𝑥! + 𝑦!

𝑎!	𝑐𝑜𝑠ℎ!𝜉 +
𝑧!

𝑎!	𝑠𝑖𝑛ℎ!𝜉 = 1. 

             (4) 

Setting 𝜌! = 𝑎!	𝑠𝑖𝑛ℎ!𝜉 results in 
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𝑥! + 𝑦!

𝜌! + 𝑎!	 +
𝑧!

𝜌! = 1. 

             (5) 

 

r in the metric given by Eq. (1) is implicitly determined by Eq. (5) up to a sign.  

 

A null Killing surface is also known as a Killing horizon.  It is where a Killing vector changes 

from time-like to space-like or visa-versa when crossing the surface.  The null Killing surfaces 

for the Kerr-Newman metric are obtained by setting the g00 component of the metric equal to 

zero.  This results in the equation, 

 

𝜌# − 2𝑚𝜌" + 𝑒!𝜌! + 𝑎!𝑧! = 0. 

             (6) 

 

To obtain the solutions to this equation, Eq. (5) is solved for r in terms of R and z and one of 

the four solutions substituted into Eq. (6).  There are nine very long solutions to the resulting 

equation: one zero, four imaginary and four that correspond to pieces of the null Killing surface.   

 

Before proceeding it is worth recalling the nature of the disk circled by the ring singularity in 

the Kerr solution.  This space is flat and has the character of a quadratic branch point in the 

complex plane; that is, if one passes through the surface form above the coordinate labeling the 

oblate spheroidal surfaces of constant r is negative.  The Kerr solution in the negative r region 

is identical in structure to the positive r part with m being replaced by its negative, which then 

causes g00 to change sign in this region.  The geometry around the disk circled by the ring 

singularity for the Kerr-Newman solution is quite different from that of the Kerr metric.   

 

The full line element for the Kerr-Newman solution in Kerr-Schild coordinates with the mostly 

minuses signature is 
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𝑑𝑠! = 𝑑𝑡! − 𝑑𝑥! − 𝑑𝑦! − 𝑑𝑧!

−
𝑟!(2𝑀𝑟 − 𝑒!)
𝑟# + 𝑎!𝑧! 	 F

[𝑟(𝑥	𝑑𝑥 + 𝑦	𝑑𝑦) − 𝑎(𝑥	𝑑𝑦 − 𝑦	𝑑𝑥)]
𝑟! + 𝑎! +

𝑧	𝑑𝑧
𝑟 + 𝑑𝑡I

!

. 

             (8) 

 

As mentioned earlier, it can be seen from the term before the first set of brackets, the metric 

becomes that of flat Minkowski space for 𝑟 = 	 𝑒!/2𝑀.  This also true for negative r, since M 

changes sign for that region.  This was noted by López1, following Israel2, when attempting to 

create a classical model of the spinning electron using the Kerr-Newman solution.  The Kerr-

Newman metric has no null Killing surfaces for e2 > m2 nor for e2 = m2 and a > 0.  The 

parameters for the electron tell us that in this model there would be no null Killing surfaces. 

 

For e = 0, the null Killing surfaces of the Kerr-Newman solution are shown in Fig. 1.   

 

 
Figure 1.  The Kerr-Newman null Killing surfaces for e = 0 and a = m = 1.  
The ring singularity for a = 1 borders the inner null surface as in the Kerr 
metric.  Note that the proportion of the height and width of the plot, reflect 
the “golden ratio” of 1.61803, which flattens the figures.  The golden ratio is 
a constant the gives the limiting value of ratios of successive Fibonacci 
numbers.   

 

Because r takes both positive and negative values the metric is smooth everywhere away from 

the ring singularity.  The space where r is negative is asymptotically flat.  For r < 0, the 

azimuthal vector is timelike so that there are closed timelike curves.3  These non-causal curves 
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extend a small distance into the positive r region.  Note that in the Kerr-Newman solution e 

and m respectively represent the charge and mass in the limit of large positive r.  In the limit 

of large negative r, the mass and charge are -m and -e.   

 

With regard to the closed timelike curves of the Kerr-Newman solution for r < 0, there is a 

relevant theorem given by Geroch4 that every compact geometry without boundary has closed 

timelike curves.  The closed Friedmann model of the universe, topologically a 3-sphere having 

a compact spacelike surface, is an example. 

 

For the parameters e = 0.1 and a = m = 1, the null Killing surfaces are shown in Fig. 2. 

 

 
Figure 2.  The Kerr-Newman null Killing surfaces for e = 0.1 and a = m = 1.   

 

There are two important features of Fig. (2) to note: the first is that a non-zero value of e opens 

up the surfaces at the poles allowing passage into the inner null surface, as is the case for the 

Kerr metric with a > m; and the second is that the inner surface does not terminate at the ring 

singularity located at r = 1, unlike the Kerr metric, but at a somewhat greater value of r.  This 

means that the ring singularity is reachable from outside the surfaces.  What cannot easily be 

seen in Fig. 2 is that there is a gap at the equator.  This is shown in Fig. 3. 
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Figure 3.  An equatorial view of the Kerr-Newman null Killing 
surfaces for e = 0.1 and a = m = 1 showing the gap barely 
visible in Fig. 2.   

 

As the value of e increases, the gap in the null surfaces decreases, and when a2 + e2 > m2 and 

m > a > e the null surface becomes a toroid.  This is shown in Fig. 4(a) and (b).   

 

 ,  

   (a)          (b) 
Figure 4.  the Kerr-Newman null Killing surfaces for e = 0.9, a = 1, and m = 1.02.  The ring singularity is 
outside the toroidal surface. 

 

The gap seen in the inner part of the toroid shown in Fig. (3) measures ~0.4.  As pointed out 

above, the metric becomes that of flat Minkowski space for 𝑟 = 	 𝑒!/2𝑚.  For the values of the 

parameters used to plot Fig.3, 𝑒!/2𝑚 ~0.4, which is what the gap measures in the figure.   
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Astrophysical Applications of the Kerr and Kerr-Newman Metrics 
Besides the Schwarzschild and Reissner-Nordström metrics, two of the most important metrics 

in general relativity are the Kerr and Kerr-Newman solutions.  The first describes the 

gravitational field or a rotating body and its applicability to the exterior of massive bodies has 

been well confirmed by observation.  The Kerr-Newman solution describes the gravitational 

and electromagnetic fields of a rotating and charged mass.  From astrophysical observations, 

however, this solution has had no confirmation.   

 

In order to describe the entire spacetime of either solution, the exterior solutions must be 

matched to an interior solution.  Unfortunately, there are no known non-singular interior 

solutions for these metrics.  Nonetheless, the Kerr solution has been found to have great 

astrophysical applicability.   

 

An additional problem exists for the Kerr-Newman solution.  It is currently believed that the 

universe as a whole is uncharged.  The conservation of charge would then imply that massive 

bodies described by the Kerr-Newman solution must be created in pairs having opposite 

electric charge.  Even if this could occur, the charges would likely be neutralized by 

surrounding ionized gas.    
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