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ABSTRACT

The null Killing surfaces for the Kerr-Newman solution to the Einstein field
equations is discussed, derived and plotted. For some parameters of the mass
m, the angular momentum per unit mass a, and the charge e, the plots show
some very unusual features.



The Kerr-Newman Metric

The Kerr-Newman metric in Kerr-Schild coordinates is given by

2mp? — e2p?

2
ds? = dx? + dy? + dz* — dt* + (k,dx*)",

p* + a2z2

(1
where e is the charge, m the mass, a is the angular momentum per unit mass, and the surfaces
of constant p are confocal ellipsoids of revolution, the equation for which is derived from the

defining relations for oblate spheroidal coordinates:

x = a coshé cosn cos¢
y = a cosh& cosn sing
z = a sinhé sinn.

(2)
The null vector field k,, is given by
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Note that if p = e2/2m the metric of Eq. (1) becomes that of 4-dimensional Euclidean

1
space. The metric given by Eq. (1) has a ring singularity located at R := (x? + y?)z = a and

z =0 (where p=0). The definition of R is important for what follows.

From Egs. (2) one can then compute
x? +y? N z2
a? cosh?¢ * a? sinh?¢
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Setting p? = a? sinh?¢ results in
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p in the metric given by Eq. (1) is implicitly determined by Eq. (5) up to a sign.

A null Killing surface is also known as a Killing horizon. It is where a Killing vector changes
from time-like to space-like or visa-versa when crossing the surface. The null Killing surfaces
for the Kerr-Newman metric are obtained by setting the goo component of the metric equal to

zero. This results in the equation,

p* —2mp3 + e?p? + a%z% = 0.
(6)

To obtain the solutions to this equation, Eq. (5) is solved for p in terms of R and z and one of
the four solutions substituted into Eq. (6). There are nine very long solutions to the resulting

equation: one zero, four imaginary and four that correspond to pieces of the null Killing surface.

Before proceeding it is worth recalling the nature of the disk circled by the ring singularity in
the Kerr solution. This space is flat and has the character of a quadratic branch point in the
complex plane; that is, if one passes through the surface form above the coordinate labeling the
oblate spheroidal surfaces of constant » is negative. The Kerr solution in the negative » region
is identical in structure to the positive r part with m being replaced by its negative, which then
causes goo to change sign in this region. The geometry around the disk circled by the ring

singularity for the Kerr-Newman solution is quite different from that of the Kerr metric.

The full line element for the Kerr-Newman solution in Kerr-Schild coordinates with the mostly

minuses signature is



ds? = dt? — dx? — dy? — dz?

r2(2Mr —e?) [[r(x dx + y dy) —a(x dy — y dx)] 42 dz

+ dt
r* + a2z2 r2 + a2

(8)

As mentioned earlier, it can be seen from the term before the first set of brackets, the metric
becomes that of flat Minkowski space for r = e?/2M. This also true for negative r, since M
changes sign for that region. This was noted by Lopez!, following Israel?, when attempting to
create a classical model of the spinning electron using the Kerr-Newman solution. The Kerr-
Newman metric has no null Killing surfaces for €* > m? nor for ¢> = m* and a > 0. The

parameters for the electron tell us that in this model there would be no null Killing surfaces.

For e = 0, the null Killing surfaces of the Kerr-Newman solution are shown in Fig. 1.

Figure 1. The Kerr-Newman null Killing surfaces for e =0 and a = m = 1.
The ring singularity for @ = 1 borders the inner null surface as in the Kerr
metric. Note that the proportion of the height and width of the plot, reflect
the “golden ratio” of 1.61803, which flattens the figures. The golden ratio is
a constant the gives the limiting value of ratios of successive Fibonacci
numbers.

Because 7 takes both positive and negative values the metric is smooth everywhere away from
the ring singularity. The space where r is negative is asymptotically flat. For » < 0, the

azimuthal vector is timelike so that there are closed timelike curves.> These non-causal curves
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extend a small distance into the positive 7 region. Note that in the Kerr-Newman solution e
and m respectively represent the charge and mass in the limit of large positive . In the limit

of large negative r, the mass and charge are —m and —e.

With regard to the closed timelike curves of the Kerr-Newman solution for » < 0, there is a
relevant theorem given by Geroch* that every compact geometry without boundary has closed
timelike curves. The closed Friedmann model of the universe, topologically a 3-sphere having

a compact spacelike surface, is an example.

For the parameters e = 0.1 and @ = m = 1, the null Killing surfaces are shown in Fig. 2.

Figure 2. The Kerr-Newman null Killing surfaces fore=0.1 anda=m = 1.

There are two important features of Fig. (2) to note: the first is that a non-zero value of e opens
up the surfaces at the poles allowing passage into the inner null surface, as is the case for the
Kerr metric with a > m; and the second is that the inner surface does not terminate at the ring
singularity located at » = 1, unlike the Kerr metric, but at a somewhat greater value of ». This
means that the ring singularity is reachable from outside the surfaces. What cannot easily be

seen in Fig. 2 is that there is a gap at the equator. This is shown in Fig. 3.



Figure 3. An equatorial view of the Kerr-Newman null Killing
surfaces for e = 0.1 and a = m = 1 showing the gap barely
visible in Fig. 2.

As the value of e increases, the gap in the null surfaces decreases, and when a? + ¢* > m? and

m > a > e the null surface becomes a toroid. This is shown in Fig. 4(a) and (b).

Figure 4. the Kerr-Newman null Killing surfaces for e = 0.9, @ = 1, and m = 1.02. The ring singularity is
outside the toroidal surface.

The gap seen in the inner part of the toroid shown in Fig. (3) measures ~0.4. As pointed out
above, the metric becomes that of flat Minkowski space for r = e?/2m. For the values of the

parameters used to plot Fig.3, e?/2m ~0.4, which is what the gap measures in the figure.
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Astrophysical Applications of the Kerr and Kerr-Newman Metrics

Besides the Schwarzschild and Reissner-Nordstrdm metrics, two of the most important metrics
in general relativity are the Kerr and Kerr-Newman solutions. The first describes the
gravitational field or a rotating body and its applicability to the exterior of massive bodies has
been well confirmed by observation. The Kerr-Newman solution describes the gravitational
and electromagnetic fields of a rotating and charged mass. From astrophysical observations,

however, this solution has had no confirmation.

In order to describe the entire spacetime of either solution, the exterior solutions must be
matched to an interior solution. Unfortunately, there are no known non-singular interior
solutions for these metrics. Nonetheless, the Kerr solution has been found to have great

astrophysical applicability.

An additional problem exists for the Kerr-Newman solution. It is currently believed that the
universe as a whole is uncharged. The conservation of charge would then imply that massive
bodies described by the Kerr-Newman solution must be created in pairs having opposite
electric charge. Even if this could occur, the charges would likely be neutralized by

surrounding ionized gas.
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