
FORCE-FREE MAGNETIC FIELDS: ERRATA AND ADDITIONS AS OF 2026 

 

Errata 

p. 32.  In Fig. 3.2, the expression for 𝜓 should be 𝜓 = 𝑟$𝜋/2𝑟	𝑗!"!"	
(𝑟).  This changes the 

height and width of the figures very slightly.   

p. 73.  In the paragraph aAer Eq. (4.33), 4th line, the equaFon referred to should be Eq. (4.32). 

p. 74.  First full paragraph, Reference number to Hu should be 25. 

p. 77.  In the last line before Fig. 4.15, the 𝜎 should be a 𝛾.  

p. 94.  In the last paragraph, line 4, the S should be a Σ. 

 

To bring the book up to date, the following addiFons should be inserted. 

 

ADDITION 1 

p. 43.  Just aAer Eq. (3.136) add the following from my paper A Force-Free Magne.c Field 

Solu.on in Toroidal Coordinates, Physics of Plasmas (DOI: 10.1063/5.0146040, 2023).   

 

Introduc=on 

In topology, a torus is a surface of genus one, meaning it has one hole, and the relevant 

quesFon here is whether it is possible for the surface of a torus to have on it a non-singular 

force-free magneFc field, meaning one that does not vanish at any point on the surface.  Such 

a field saFsfies the force-free magneFc field equaFon ∇ × 𝑩 = 𝛼𝑩.  Arnold [1] has shown that 

for force-free magneFc fields the field lines will lie on tori provided the field is non-singular 

and a is not constant.  In addiFon, a theorem by Hopf tells us that that the torus and the Klein 

bo[le are the only smooth, compact, connected surfaces without boundary allowing a vector 

field without a singularity [2].   

 

It is worth staFng the Poincare-Hopf theorem somewhat more formally: If a smooth, compact, 

connected surface S has on it a vector field with only isolated zeros, then its Euler 

characterisFc 𝜒(𝑆) is an appropriate sum of the index of each zero.  Any closed orientable 

surface is topologically equivalent to a sphere with p-handles and Euler characterisFc  

𝜒(𝑆) = 2 − 2𝑝. 



What the Poincare-Hopf theorem states is that only surfaces with Euler CharacterisFc zero can 

have a vector field which is nowhere zero.  Only the torus and Klein bo[le have Euler 

characterisFc zero.  Since real Klein bo[les in 3-dimensional space cannot exist, only the torus 

is relevant. 

 

Below it will be shown that there is a non-singular force-free magneFc field restricted to the 

surface of a torus, and under a restricFon on the form of the field, to the interior as well. 

 

Toroidal Coordinates and the Force-Free Rela=ons 

Solving for an exact soluFon to the force-free magneFc field equaFons in toroidal coordinates 

is a difficult problem.  An extensive history and the approaches used to solve both the exterior 

and interior toroidal problem has been given by Marsh [3].  In parFcular, for the interior 

problem no exact soluFon is known and one obtains a first order differenFal equaFon for 𝛼, 

which can most likely only be dealt with by numerical methods.   

 

There are numerous definiFons for toroidal coordinates, and the one used here is shown in 

Fig. 1 

 
Figure 1. Toroidal coordinates.  Note that 𝑎# = 𝑅# − 𝑟#. 

 

The relaFon between rectangular coordinates and toroidal coordinates is given by 



𝑥 =
𝑎	sinh𝜇	cos𝜙
cosh𝜇 − cos𝜂 ,				𝑦 =

𝑎	sinh𝜇	sin𝜙
cosh𝜇 − cos𝜂 				𝑧 =

𝑎	sin𝜂
cosh𝜇 − cos𝜂. 

                          (1) 

The metric coefficients for the coordinates are then 

ℎ$ = ℎ% =
𝑎

cosh𝜇 − cos𝜂 ,				ℎ& =
𝑎	sinh𝜇

cosh𝜇 − cos𝜂. 

                          (2) 

In toroidal coordinates the force=free magneFc field equaFon, ∇ × 𝑩 = 𝛼𝑩, yields the 

following three equaFons 

ℎ%𝐵% = −
1
𝛼ℎ&

𝜕$(ℎ&𝐵&), 

ℎ$𝐵$ =
1
𝛼ℎ&

𝜕%(ℎ&𝐵&), 

𝜕$(ℎ%𝐵%) − 𝜕%(ℎ$𝐵$) =
𝛼ℎ%
sinh𝜇 (ℎ&𝐵&). 

                          (3) 

The divergence of B is given by   

∇ ⋅ 𝑩 =
1

ℎ$ℎ%ℎ&
[𝜕$(ℎ%ℎ&𝐵$) + 𝜕%(ℎ&ℎ$𝐵%) + 𝜕&(ℎ$ℎ%𝐵&). 

                          (4) 

Imposing axial symmetry (𝜕&𝐵& = 0) and the requirement that ∇ ⋅ 𝑩 = 0 results in 

𝜕$(ℎ%ℎ&𝐵$) +	𝜕%(ℎ&ℎ$𝐵%) = 0. 

                          (5) 

This means that 𝛼 is only a funcFon of ℎ&𝐵&; that is, 𝛼 = 𝛼(ℎ&𝐵&).  The force-free relaFon 

also implies that ∇𝛼 ⋅ 𝑩 = 0.  Since 𝛼 is not a funcFon of 𝜙 by symmetry, this implies in turn 

that  

𝜕% 	𝛼 = −
𝐵$
𝐵%
𝜕$𝛼. 

                          (6) 

Combining Eq. (6) with Eqs. (3) yields the differenFal equaFon, 

 



𝜕$ N
1
ℎ&

𝜕$(ℎ&𝐵&)O + 𝜕% N
1
ℎ&

𝜕%(ℎ&𝐵&)O +
𝜕$𝛼
𝛼ℎ&

N
𝐵$
𝐵%
	𝜕%(ℎ&𝐵&) − 𝜕$(ℎ$𝐵$)O

+
𝛼'ℎ%
sinh𝜇 (ℎ&𝐵&) = 0 

                          (7) 

This equaFon leads to an intractable equaFon for 𝛼, but will be simplified by imposing the 

boundary condiFon on 𝐵$ discussed below.  

 

Boundary Condi=ons 

The cylindrically symmetric Lundquist soluFon to the force-free field equaFons is shown in 

Fig. 2.  The Lundquist soluFon [4] is obtained by restricFng 𝛼 to a constant and further 

restricFng the magneFc field to the form 𝑩 = [0, 𝐵&(𝑟), 𝐵((𝑟)].   

 

The field equaFons will then give the soluFon 𝑩 = 𝐴)[0, 𝐽*(𝛼𝑟), 𝐽)(𝛼𝑟)], where J0 and J1 are 

Bessel funcFons and 𝐴) is a constant. 

 
Figure 2.  The Lundquist solu8on.  The figure is drawn so that Bz = J0(a a) = 0 on 
the cylinder r = a. 

 

If one chooses to apply the soluFon 𝑩 = 𝐴)[0, 𝐽*(𝛼𝑟), 𝐽)(𝛼𝑟)] in a cylindrical region D 

bounded by 𝜕D (as shown if Fig.2) such that 𝐽)(𝛼𝑎) = 0, the soluFon matches smoothly to an 

external field given by 𝑩 = [0, (𝑎𝐴)/𝑟)	𝐽*(𝛼𝑎),0] and no surface currents are required to 

saFsfy the boundary condiFon. 

 



As is the case for the cylindrically symmetric Lundquist soluFon, the force-free field in the 

interior of a torus will create an azimuthal field around the torus, but if ∇ ⋅ 𝑩 = 0 the magneFc 

field normal to the surface of the torus at 𝜇 = 𝜇) must vanish; i.e., 𝐵$(𝜇)) = 0.  It is this 

boundary condiFon, 𝐵$(𝜇)) = 0, that will be used in what follows to find the magneFc field—

and since it is force-free also the current—distribuFon on the surface of a toroid.  𝐵$ does not 

necessarily vanish in the interior of the torus, but if the form of the field is restricted to the 

form 𝑩 = [0, 𝐵%(𝑟), 𝐵&(𝑟)], then 𝐵$ = 0 on each torus given by 𝜇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and the 

soluFon found applies to the interior of the torus as well.   

 

The Equa=on for 𝜶 on the Surface of the Torus,  

The following differenFal equaFon for 𝛼 follows from that of Eq. (7) combined with the 

assumpFon that 𝐵$ vanishes everywhere. 

𝜕$ N
1
ℎ&

𝜕$(ℎ&𝐵&)O −
𝜕$𝛼
𝛼ℎ&

	𝜕$(ℎ&𝐵&) +	
𝛼'ℎ%
sinh𝜇 (ℎ&𝐵&) = 0 

                          (8) 

 

EquaFon (8) has, unsurprisingly, two soluFons [5] 

𝛼 = ±
1
𝑎 [√(−cos

'𝜂 + cos𝜂	cosh𝜇 + cos'𝜂	coth'𝜇 − 2cos𝜂	cosh𝜇	coth'𝜇

+ cosh'𝜇	coth'𝜇 − sinh'𝜇)]. 

                          (9) 

When 𝜂 is held constant, say in the posiFve equaFon, and 𝛼 plo[ed as a funcFon of 𝜇, 𝛼 grows 

monotonically with increasing 𝜇.  In what follows, it will be seen that the field winds around 

the torus and the sign of 𝛼 determines the handedness of the field while the period of the 

twisFng field is given by |𝛼|. 

 

With reference to Fig. 1, henceforth 𝜇 = 1	and 𝑎 = 2 will generally be used.  The plot of both 

soluFons given by Eq. (9) for 𝛼 is shown in Fig. 3.   



 
Figure 3.  The plot of both solu8ons for 𝛼 in Eq. (9) as a func8on of 𝜂 where 0 ≤ 𝜂 ≤ 2π. 

 

Figure 3 shows that the soluFons for 𝛼 do not cover the full range of 𝜂 from 0 ≤ 𝜂 ≤ 2π.  For 

0 ≤ 𝜂 ≤ 0.529 and 5.753 ≤ 𝜂 ≤ 2π, 𝛼 is pure imaginary so that the soluFons given in Eq. (9) are 

not applicable.  In these regions, the real part of 𝛼 vanishes and since 𝛼 must be a real 

funcFon, the force-free relaFon ∇ × 𝑩 = 𝛼𝑩 implies that the field 𝑩 is given by the gradient 

of a scalar funcFon.  It will be seen below that the transiFon from a force-free field to this 

gradient field is smooth with 𝑩 always greater than zero so that the field is non-singular. 

 

The Force-Free Field on the Torus 

With 𝐵$(𝜇)) = 0, Eqs. (3) imply that ℎ&𝐵& = 𝐶*, where 𝐶* is a constant so that 𝐵& = 𝐶*/ℎ&.  

In Eq. (4), ∇ ⋅ 𝑩 = 0, 𝐵$ = 0, and cylindrical symmetry imply that 𝜕%(ℎ$ℎ&𝐵%) = 0	so that 

𝐵% = 𝐶'/ℎ&ℎ$.  Figure 4 shows 𝐵& and 𝐵%  for 𝐶1 = 1, 𝐶2 = 2, with 𝜇 =1 and a=2. 

 

 
Figure 4. 𝐵$ and 𝐵% ploHed for 0 ≤ 𝜂 ≤ 2𝜋. 
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Where the curves for 𝐵$ and 𝐵% cross the magnitude of these components are equal so that 

the angle of their vector is at p/4 radians with respect to 𝜙_.  The magnitude of the components 

depends on the choice of the constants C1 and C2. 

 

Note that in the regions 0 ≤ 𝜂 ≤ 0.529 and 5.753 ≤ 𝜂 ≤ 2π, where 𝛼 is pure imaginary there 

is no disconFnuity in the field components and that the components 𝐵$ and 𝐵% never vanish so 

that the vector field they represent is not singular.  Coupled with the fact that a is not constant, 

the field saFsfies Arnold's requirements for a force-free field on a torus. 

 

The fact that this soluFon has a smooth transiFon from a force-free magneFc field to a field 

given by the gradient of a scalar funcFon in the regions  0 ≤ 𝜂 ≤ 0.529 and 5.753 ≤ 𝜂 ≤ 2π 

is one of the most interesFng features of the soluFon. 

 

A vector plot of the vector 𝑩 = (0, 𝐵𝜙, 𝐵𝜂) gives a be[er idea what the field looks like.  This is 

shown in Fig. 5. 

 

 

 

   
 

Figure 5.  This is a plot of the vector field 𝑩 = (0, 𝐵$, 𝐵%) as a func8on of 𝜙 and 𝜂.  The 
magnitude of the field is given by the length of the arrows.  For a given 𝜂 the projec8on of the 
vectors on the 𝜙-axis (the 𝐵$ component), remains constant so that axial symmetry is 
preserved.  The angle of the vectors along a given 𝜂 with the 𝜙-axis changes with 𝜙, although 
that is somewhat difficult to see in the figure. 
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This field is unusual since both the pitch and magnitude change with locaFon on the surface 

of the torus.  This should be compared to the Lundquist soluFon shown in Fig. 2 and its surface 

at r = a. 

 

Considering only the plot of Fig. 5 itself, without the "padding" around it, one can get idea of 

how the field looks on a torus by idenFfying the 𝜙 sides of this plot and then idenFfying the 

ends of the resulFng cylinder. 

 

AlternaFvely, one can use a stream plot, which loses the magnitude informaFon.  The stream 

plot itself is shown in Fig 6 and its mapping onto the torus in Fig. 7. 

 

 
Figure 6.  A stream plot of the vector field shown in Fig. 5. The magnitude informa8on of Fig. 5 
cannot be made a part of this plot.   

 

 

 
Figure 7.  Two views of the stream plot of Fig. 6 mapped onto the torus.  The gap seen in the first figure 
is an ar8fact of the mapping and not a discon8nuity in the field.  The region on the perimeter of the 
torus where the field becomes a gradient field is also indicated. 
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The region where 0 ≤ 𝜂 ≤ 0.529 
and 5.753 ≤ 𝜂 ≤ 2π 



In producing the plots in Fig. 7 the axes and "padding" around the stream plot in Fig. 6 were 

remove before doing the mapping.  Unfortunately, the mapping program only recognizes the 

removal of the axes--hence the gap seen parFcularly in the first figure.  It is not real and only 

an arFfact of the mapping. 
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ADDITION 2 

Following the addiFon above add A Force-Free Magne.c Field in Cyclidal Coordinates from my 

2023 paper, which is available at h[p://arxiv.org/abs/2310.17673. 

 

 

INTRODUCTION 
 

In plasma physics, where the condiFon for plasma equilibrium is given by (∇ × 𝑩) × 𝑩 = ∇𝑝, 

where p is the plasma pressure, the magneFc field will be force-free if ∇𝑝 = 0.  Force-free 

means that the "self-force" or Lorentz force vanishes.  Force-free magneFc field configuraFons 

are difficult to find because (∇ × 𝑩) × 𝑩 = 0 is a nonlinear equaFon.  The plasma 𝛽 is defined 

as the raFo of the plasma pressure to the magneFc pressure 𝑝+.  The force-free approximaFon 

is valid for "low-beta" plasmas.  Such plasmas are oAen found in an astrophysical context.  

Here it is shown that force-free fields can not only have soluFons for toroids, as was shown in 

an earlier paper, but also for cyclides. 

 

Dupin cyclides are those surfaces where the curvature lines are circles.  The curvature lines 

are given by the parametric variables u and v with one or the other being equal to a constant.  

Of course, this is also true for tori, which—as will be discussed below—arise from sepng two 



of the parameters of an ellipFc cyclide equal.  An ellipFc cyclide has a parametric 

representaFon in three-dimensional Cartesian coordinates as [1] 

 

𝑥 =
𝑑(𝑐 − 𝑎	𝑐𝑜𝑠𝑢	𝑐𝑜𝑠𝑣) + 𝑏'𝑐𝑜𝑠𝑢

𝑎 − 𝑐	𝑐𝑜𝑠𝑢	𝑐𝑜𝑠𝑣 , 

𝑦 =
𝑏	𝑠𝑖𝑛𝑢(𝑎 − 𝑑𝑐𝑜𝑠𝑣)
𝑎 − 𝑐	𝑐𝑜𝑠𝑢	𝑐𝑜𝑠𝑣 , 

𝑧 =
𝑏	𝑠𝑖𝑛𝑣(𝑐	𝑐𝑜𝑠𝑢 − 𝑑)
𝑎 − 𝑐	𝑐𝑜𝑠𝑢	𝑐𝑜𝑠𝑣 , 

0 ≤ 𝑢, 𝑣 < 2𝜋. 

                  (Eqs. 1) 
 
Figure 1 gives an example of an ellipFc cyclide and also a cutaway view of nested ellipFc 

cyclides.  The lines of curvature are given by u and v with one or the other being equal to a 

constant; i.e., for a constant value of v, u follows the curvature circle around the cyclide the 

long way and for a constant value of u, v follows the curvature circle around the cyclide the 

short way. 

 
Focal conics can be seen as degenerate focal surfaces: Dupin cyclides are the only surfaces 

where focal surfaces collapse to a pair of curves that are focal conics.  In the case of the ellipFc 

cyclides the focal conics are an ellipse and a hyperbola.  The plane of the hyperbola is 

orthogonal to the plane containing the ellipse and the hyperbola is the focal conic to the 

ellipse.   

 
 
 
 
 
 
 
 
 
 
 
 
           (a)                   (b)  

Figure 1.  (a) An ellip8c cyclide.  Note the perpendicular lines of curvature.  (b)  Parallel or 
nested surfaces of an ellip8c cyclide.  The parameters of the surfaces are: a = 1, b = 0.98, 
c = 0.199 and d, which specifies each of the cyclide surfaces, is d = 0.30, 0.45, and 0.60.  The 
ellipse shown in the figure is discussed below [Source: Wikimedia Commons]. 

 



The parameters a, b, c, d in Eqs. (1) are the semi-major and semi-minor axes of the ellipse and 

c is its eccentricity.  A Dupin cyclide can be considered to be a channel surface (the envelope 

of a one-parameter family of spheres) and d would be the average radius of the generaFng 

spheres.  The equaFons of the ellipse and hyperbola are 

 
𝑥'

𝑎' +
𝑦'

𝑏' = 1,				𝑧 = 0, 

𝑥'

𝑐' −
𝑧'

𝑏' = 1,				𝑦 = 0, 

0 < 𝑏 ≤ 𝑎, 	𝑐' = 𝑎' − 𝑏'. 
                  Eqs. (2) 
 

The implicit equaFon [1], meaning that the equaFon is not solved for the variables x, y, or z, 

is important for relaFng ellipFc cyclides to tori of revoluFon.  It is given by 

 
(𝑥' + 𝑦' + 𝑧' + 𝑏' − 𝑑')' − 4(𝑎𝑥 − 𝑐𝑑)' − 4𝑏'𝑦' = 0. 

                    Eq. (3) 
 
In Eq. (3) some authors omit the factor 4 in the last term.  The idea is to set a = b and show 

that c = 0 so that the ellipse becomes a circle and the hyperbola degenerates into a line so 

that the corresponding degenerate cyclides are tori of revoluFon thus showing that the torus 

belongs to the class of ellipFc cyclides.  However, Eq. (3) is very difficult to solve for c because 

the coefficients are inexact, but if one sets a = b = 1 and d = 0.3, one can obtain a soluFon by 

solving a corresponding exact system and “numericizing” the result.  It turns out that c is 

indeed equal to zero. 

 
 

THE FORCE-FREE MAGNETIC FIELD EQUATIONS IN CYCLIDAL COORDINATES 
 
The general soluFon to the force-free field equaFons in cyclidal coordinates is a very difficult 

problem.  The force-free field equaFon is ∇ × 𝑩 = 𝛼𝑩, where the expressions for the curl or 

divergence are non-illuminaFng complex funcFons of trigonometric funcFons that are very, 

very long.  Some simplificaFons must be imposed.  Because the divergence of the magneFc 

field must vanish, it is assumed here that the normal component of the magneFc field must 

vanish on the surface of the cyclide.  Strictly speaking, a cyclide does not have cylindrical 

symmetry, making finding a soluFon almost impossible.  

 



But, as discussed above, the lines of curvature of any Dupin cyclide are circles having the 

parametric coordinates u and v.  To obtain a viable soluFon to the force-free magneFc field 

equaFons, cylindrical symmetry is assumed for each of the u circular coordinate lines upon 

which v is a constant.  This means that 𝐵, is constant along each u-circle.  This is unusual 

because the planes containing the u-circles where v equals a constant are not parallel.   

 

If w represents the coordinate normal to the cyclidal surface, the metric coefficients in cyclidal 

coordinates, which can be found from Eqs. (1) are:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  Eqs. (4) 
 
In arbitrary curvilinear coordinates the divergence of B is given by 
 

𝛁 ∙ 𝑩 =
1
$𝑔

𝜕-(($𝑔𝐵
.), 

                    Eq. (5) 
 
where 𝑔 = q𝑔./q, 𝑖 = 𝑢, 𝑣, 𝑤.  The calculaFons for the force-free fields will be greatly 

simplified if advantage is taken of the requirement that the normal component of the 
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magneFc field, 𝐵0, must vanish on the surface of the cyclide.  This allows the introducFon of 

a flux funcFon Φ.  EquaFon (5) will then be saFsfied if a funcFon is introduced such that 

 

$𝑔𝐵, = 𝜕1Φ, $𝑔𝐵1 = −𝜕,Φ. 

                    Eq. (6) 
 

A Dupin cyclide has orthogonal coordinates, and for such coordinates 𝑔./ = 𝑔./ = 0, 𝑖 ≠ 𝑗; the 

metric coefficients hi are defined by 𝑔.. = ℎ.', 𝑔.. = 1/ℎ.'; $𝑔 = ℎ,ℎ1ℎ0.  And the physical 

components are then ℎ.𝐵..  From Eq. (6) these may be wri[en as 

 

𝐵, =
1

ℎ1ℎ0
𝜕1Φ, 𝐵1 = −

1
ℎ,ℎ0

𝜕,Φ. 

                  Eqs. (7) 
 

What remains to do in order to use this approach of making use of a flux funcFon is to find 

the funcFon itself and show that the fields of Eq. (7) are soluFons of the force-free field 

equaFons.  However, finding the flux funcFon in coordinates far simpler than cyclidal 

coordinates can be a very difficult problem [2].  There is, however, a simpler way to find the 

flux funcFon: EquaFons (7) imply that 

 

𝑑Φ = ℎ1ℎ0𝐵, − ℎ,ℎ0𝐵1 , 

                    Eq. (8) 

 

so that given test funcFons for 𝐵, and 𝐵1 one can integrate Eq. (8) to find Φ.  Finding 

appropriate test funcFons is a quesFon of intuiFon.  What is done here is to choose one that 

looks interesFng when mapped onto the cyclide.  Here is a simple example that will used  

 

𝐵, = 2/ℎ1	𝑎𝑛𝑑	𝐵1 = 10/ℎ,. 

                  Eqs. (9) 

The flux funcFon is then  

 

 



Φ = 2uℎ0𝑑𝑣 − 10uℎ0𝑑𝑢. 

                 Eq. (10) 

 

Given the coefficients a, b, c, d, the flux funcFon Φ is:  

 
                 Eq. (11) 
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Pupng in the numerical value for the constants of a = 1, b = 0.98, c = 0.199, and d = 0.3, one 

can compute the flux funcFon.  The stream and vector plots of the fields in Eqs. (9) are shown 

below and then mapped onto the cyclide:  

 

 
Figure 2. Stream plot of the magne8c field components given by Eqs. (9).  The 
u-axis is along the abscissa and the v-coordinate along the ordinate. 

 

 
Figure 3. Vector plot of the magne8c field components given by Eqs. (9).  The u-
axis is again along the abscissa and the v-coordinate along the ordinate. 
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The stream plot mapped onto the cyclide, using the numerical values of the constants given 

above, is shown in Fig. 4, and the vector plot on the cyclide by Fig. 5. 

 

Figure 4. Stream plot of the magne8c field components specified by the flux func8on Φ, given 
by Eq. (11), mapped onto the cyclidal surface.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Vector plot of the magne8c field components specified by the flux func8on Φ, given 
by Eq. (11), mapped onto the cyclidal surface.   

 

 

It remains to show that the force-free field equaFons are saFsfied by the magneFc fields of 

Eqs. (9) by finding an expression for the associated funcFon 𝛼.    

���������
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The force-free field equaFon in 3-dimensional space is given by ∇ × 𝑩 = 𝛼𝑩; but it has been 

assumed here that the normal component of the magneFc field must vanish on the surface 

of the cyclide so that the divergence of the magneFc field vanishes.  This means that the field 

equaFon must be evaluated on the surface of the cyclide and the 3-dimensional curl cannot 

be used.   

 

Consequently, on the surface one must use the 2-dimensional component of the curl, also 

known as the circulaFon in another context.  It is given by 

 

(∇ × 𝑩)0 =
1

ℎ,ℎ1
(𝜕,(ℎ1𝐵1) − 𝜕1(ℎ,𝐵,)). 

                 Eq. (12) 

The full equaFon for (∇ × 𝑩)0 with the meanings of the symbols inserted is very long and 

there is li[le if any insight to be gained.  It is available in the original paper. 

 

The force-free field equaFon to be solved for the funcFon 𝛼 is then 

 

1
ℎ,ℎ1

(𝜕,(ℎ1𝐵1) − 𝜕1(ℎ,𝐵,)) = 𝛼(𝐵, + 𝐵1). 

                 Eq. (13) 

The soluFon for 𝛼 is again very long, offering no insight, and it is available in the original paper. 

 

Figures 6(a) and 6(b) show 3-dimensional plots of the funcFon 𝛼.  The cross secFons at 

 𝑢 = 0	and	𝑢 = 2𝜋 match since they represent the same cross secFon on the cyclide and the 

same is true for 𝑣 = 0	and	𝑣 = 2𝜋.  Note the changes in sign of the funcFon 𝛼.  In the regions 

where 𝛼 is zero, the curl vanishes and the magneFc field is the gradient of a scalar funcFon.   

 

 

 

 

 



 
    (a)                 (b)  

Figure 6.  3-dimensional plots of the solu8on for the func8on 𝛼 of Eq. (13).  The variables u 
and v are shown as capitals in the figures to make them easier to read.   

 

The soluFon given above is then an example of a soluFon to the problem of finding a force-

free magneFc field on the surface of a cyclide. 

 

CYCLIDE TO TOROID 

As menFoned in the IntroducFon, the torus belongs to the class of ellipFc cyclides.  By sepng 

the coefficients a = b and c = 0, the flux funcFon approach to finding soluFons used above 

should yield a soluFon on a torus.  It is shown in this secFon that that is indeed true.  To make 

comparison easier the values of the constants are now chosen to be a = b = 1, c= 0, and d = 

0.3.  With these values the metric coefficients of Eqs. (4) become  

 

ℎ, = $cos'(𝑢)(1 − 0.3 cos(𝑣))' + sin'(𝑢)(1 − 0.3 cos(𝑣))', 

ℎ1 = $0.09sin'(𝑢)sin'(𝑣) + 0.09cos'(𝑢)sin'(𝑣) + 0.09cos'(𝑣), 

ℎ0 = cos'(𝑢)cos'(𝑣) + sin'(𝑢)cos'(𝑣) + sin'(𝑣). 

                Eqs. (14) 

And, using the same magnet field components as used above, we obtain for the flux funcFon 

the simple result Φ = −10𝑢 + 2𝑣.   

 

The stream and vector plots for the degenerate cyclide are shown in Fig. (7) 

 



 
Figure 7. Stream and vector plots of the magne8c field components given by 
Eqs. (9), but in this case for the degenerate cyclide.  The u-axis is again along the 
abscissa and the v-coordinate along the ordinate. 

 

When the stream and vector plots are mapped onto the degenerate cyclide, as shown in Figs. 

(8), it is obvious that the degenerate cyclide is indeed a torus. 

 
Figure 8. Stream and vector plots of the magne8c field components given by 
Eqs. (9), mapped onto the degenerate cyclide.   

 

The plot of the magneFc field mapped on the torus is different and much less complex than 

that found in Reference [3].  The flux funcFon approach can be used to find many other force-

free magneFc field soluFons for the torus. 

 

In order to show that this example is a soluFon to the force-free field equaFons, it must be 

demonstrated that there exists an appropriate funcFon 𝛼.  Solving for the funcFon 𝛼 using 

Eq. (13) results in 
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𝛼 = 

 
                 Eq. (15) 

 

 

Here is a 3-dimensional plot of the funcFon 𝛼 
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Figure 9. A 3-dimensional plot of the func8on 𝛼 for the degenerate 
cyclide/torus.   

 

The cross secFons at 𝑢 = 0	and	𝑢 = 2𝜋 match since they represent the same cross secFon 

on the torus and the same is true for 𝑣 = 0	and	𝑣 = 2𝜋.  Note the changes in sign of the 

funcFon 𝛼.  Where 𝛼 is zero, for the degenerate cyclide/torus at v = 0, 𝜋, and 2𝜋, the curl 

vanishes and the magneFc field is the gradient of a scalar funcFon.   

 

SUMMARY 

Recently, the problem of finding force-free magneFc fields on a torus has been solved [2], and 

since the torus can be viewed as a degenerate cyclide the quesFon naturally arises as to 

whether the more general problem of finding a force-free magneFc field on the surface of a 

cyclide can be solved for a Dupin cyclide.  The torus has cylindrical symmetry which greatly 

simplifies the problem, but this is not the case for a cyclide.  However, the lines of curvature 

of any Dupin cyclide are circles, allowing the introducFon of a limited form of cylindrical 

symmetry for each of the u circular coordinate lines, upon which v is a constant.  This results 

in a greatly simplified problem for finding a soluFon for a magneFc field on the cyclide, but it 

should be remembered that the planes containing the u-circles where v is constant are not 

parallel.   

 

If the magneFc field is independent of one coordinate, chosen above to be the normal to the 

surface of the cyclide, the divergence of the magneFc field will vanish if a flux funcFon —see 

Eq. (6)—is introduced.  Since the coordinates introduced for the cyclide are orthogonal, the 

components of the magneFc field may be wri[en as in Eq. (7).  By using test funcFons for 𝐵, 



and 𝐵1 one can find Φ.  The previous secFon explains the choice of the simple test funcFons 

specified in Eqs. (9). 

 

Since it was assumed that the normal component of the magneFc field vanishes on the surface 

of the cyclide so as to have the divergence of the magneFc field vanish, the  

3-dimensional form of the curl cannot be used in the force-free field equaFon.  Instead, one 

must use the 2-dimensional component of the curl to obtain Eq. (13) which is then solved for 

the funcFon 𝛼.  Figure (6) shows that this funcFon has negaFve values for some regions on 

the surface of the cyclide.  In the regions where 𝛼 is zero, the curl vanishes and the magneFc 

field is the gradient of a scalar funcFon.   
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ADDITION 3 

P. 117.  In the Applications chapter after Section 6.2 add “The chiral anomaly, Dirac and Weyl 

semimetals, and force-free magnetic fields” from my 2017 paper in the Canadian Journal of 

Physics available at http://arxiv.org/abs/1605.09214. 

 

INTRODUCTION 

A 2015 paper by Xiong, et al. [1] reported that the chiral anomaly, usually considered a purely 

quantum mechanical phenomenon, can be seen in the Dirac semimetal Na3Bi. The 

phenomenon appears in this material when the applied electric field and magneFc fields are 

parallel.  Because new macroscopic quantum effects are rare it is important to explore the 

implicaFons of this observaFon. 

 

Some terminology and basics:  

When the mass is set equal to zero in the Dirac equaFon it decouples into two equaFons 

known as the Weyl equaFons that have two component spinors as soluFons; these have 

chiraliFes of c = ±1.  Now define the Hamiltonian of the Dirac semimetal H(k) in terms of the 



spinor basis {I, s1, s2, s3}.  If there is a k0 such that the Hamiltonian saFsfies 

 H(k0) = 0, in the vicinity of k0 the conFnuity of Hamiltonian implies that it can be wri[en as 

.  If hi are the components of h, the band structure of the Hamiltonian, 

, is called the Dirac cone, and if h(k) is a linear funcFon of k, the 

cone in h-space also forms a cone in k-space.  An example of a Dirac cone is shown in Fig. 1(a). 

 

 

                 
               (a)               (b)  

Figure 1.  (a) A Dirac cone.  The origin is said to have a Dirac node, and the Fermi level is located 
where the apexes meet.  The upper cone represents the conduc8on band and the lower the 
valence band.  (b) When a magne8c field is applied to a Dirac semimetal it breaks the symmetry 
of the crystal and causes a Dirac node to split into two chiral Weyl nodes. 

 

The Dirac cone illustrated in Fig. 1(a) corresponds to a Dirac semimetal because there is no 

gap between the two cones, which would become hyperbolae when a gap is present.  A 

normal insulator has a gap and a three-dimensional topological insulator is characterized by 

the bulk of the material having a gap while the surface does not. 

 

A Dirac semimetal, such as Na3Bi, is a three-dimensional system with a Dirac cone having a 

double degeneracy at the Fermi energy; a Weyl semimetal has its valence and conducFon 

bands touching each other at isolated points, around which the band structure forms non-

degenerate three dimensional Dirac cones.  The apexes of the Dirac cones are called Weyl 

nodes.  Low energy quasiparFcle excitaFons in Weyl semimetals give the first example of the 

appearance of massless Weyl fermions in nature. 
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Figure 1(b) shows the band structure of a Dirac semimetal when a strong magneFc field is 

applied.  If there is no electric field present, chirality is preserved at the two nodes.  If, 

however, an electric field is applied charge will flow between the nodes, and the chiral 

anomaly will not vanish.  The charge transfer rate depends on the chirality c (see Eq. (3.2) 

below).  The standard textbooks on topological insulators expand on these definiFons and on 

the topological nature of Weyl nodes and their relaFon to Berry curvature [2,3].  

 

The first secFon below explains some aspects of the chiral anomaly and the second explains 

the connecFon with force-free magneFc fields and their relevance to the chiral anomaly 

observed in the semimetal Na3Bi.  The third secFon looks at the relaxaFon of such fields in a 

medium with a non-zero resisFvity. 

 

1. Chiral Anomaly 

In classical physics there is said to be a symmetry when the acFon S(y) is invariant under the 

transformaFon y ® y + dy, while in quantum mechanics the path integral  must 

be invariant for a symmetry to be present.  The transformaFon from classical to quantum 

mechanics does not always retain a given symmetry.  Otherwise said: Symmetries in terms of 

classical, commuFng variables may not be retained when expressed in terms on non-

commuFng quantum variables.  Such a symmetry is said to have a “quantum symmetry 

anomaly”.   

 

The quantum symmetry anomaly of interest here is the axial anomaly, which violates the 

conservaFon of axial current.  The non-conservaFon of chirality was discovered in the late 

1960s by Adler [4], and Bell and Jackiw, [5].  There is a detailed discussion of the origins of the 

phenomenon in the textbook by Zee [6], and a very clear explicaFon relevant to this work has 

been given by Jackiw [7].  

 

The axial vector current is defined as .  For massless fermions,  saFsfies 

the conFnuity equaFon .  Now define  and  so that 

; then if  is a classical or quantum field operator the transformaFon 
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                       (1.1) 

is a map between different soluFons of .  If one now couples this equaFon to 

an external gauge field ,  

 
                       (1.2) 

then for a single Fermi field coupling to  the axial vector current   obeys the anomalous 

conFnuity equaFon 

 
                       (1.3) 

where  is the dual of the field tensor .  For non-
Abelian fields,  and the  are anF-HermiFan matrices saFsfying the Lie 

algebra commutators with structure constants ; i.e., .  Note that the 

structure constants, , are normalized by .  For non-Abelian fields, Eq. (1.3) 
becomes 

 
                       (1.4) 

The chiral anomaly in quantum field theory comes from two triangle Feynman diagrams 

associated with the decay of the p0 parFcle [6]. 

 

If  corresponds to the electromagneFc four potenFal, then Eq. (1.3) becomes 

 
                       (1.5) 

It is this form of the anomaly that is responsible for the observaFons of Xiong, et al. when the 

electric and magneFc fields in Na3Bi have collinear components.  Note that the anomaly 

vanishes when the electric and magneFc fields are perpendicular; its non- vanishing depends 

on the component of B parallel to E. If the medium cannot sustain a Lorentz force the fields 

must be either perpendicular or parallel.  It is the parallel case that is of interest here.  The 

insight that the chiral anomaly should appear in crystals is due to Nielsen and Ninomiya [8]. 

For a topical review of the electromagneFc response of Weyl semimetals see Burkov [9].   
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2. Chiral Anomaly and Force-Free Magne=c Fields 

This secFon gives a short introducFon to force-free magneFc fields where the current is 

parallel to the magneFc field, implying that the Lorentz force vanishes.  In the experiment by 

Xiong, et al. [10], the same condiFon, that the current produced by an applied electric field 

be parallel to the magneFc field, is also required for the non-vanishing of the chiral anomaly.  

The origin of the current [11] is the E-field parallel to B, which breaks chiral symmetry and 

results in an axial current. 

 

In the Dirac semimetal Na3Bi the effect of the anomaly was observed when the applied electric 

field and magneFc field were aligned. Xiong, et al. suggested that the large negaFve 

magnetoresistance observed implied a long relaxaFon Fme for the current.  Since the non-

vanishing of the anomaly depends only on  not vanishing, the configuraFon of the field 

responsible for the anomaly interior to the Na3Bi crystal is likely to be force-free.  This is 

because the current associated with E is parallel to B, and this current is itself a source for an 

azimuthal magneFc field that combines with the longitudinal magneFc field applied to the 

Na3Bi to twist the flux.  It is force-free because the current associated with E is parallel to the 

twisted field. 

 

It will be seen below that force-free fields have a helicity associated with them that is related 

to the energy stored in the field.  This opens up the possibility that the decay of such fields 

may explain the long axial current relaxaFon Fme in Dirac and Weyl semimetals without 

invoking quantum mechanical processes. 

 

Fields with  are closely related to the force-free magneFc field equaFons  

with constant a [11].  In the experiment of Xiong, et al. [10], the applied electric field produces 

a current so that, because it is only the component of the electric field parallel to the applied 

magneFc field that yields a non-zero chiral anomaly, this current is parallel to the applied 

magneFc field.  This means that the field is force-free.  As a consequence, since the electric 

field corresponds to a current,  means that E = b B, where b is a scalar funcFon.  If b is 

assumed to be a constant, Maxwell’s equaFons can be used to show that , so there 

E B<

E B< B B#d a=

E B<

i!b =



are no real soluFons.  If b is assumed to only be a funcFon of Fme, E = b B and Maxwell’s 

equaFons show that 

 
                       (2.1) 

This equaFon tells us is that if E = b(t) B, then B must saFsfy the force-free field equaFon.  The 

funcFon  in Eq. (2.1) is actually a constant, call it a, as is shown in Appendix 1 of 

[11]; and this restricts the form of b to 

 

 
                       (2.2) 

If A or B vanishes,  so that there are no real soluFons; If , then  or 

 respecFvely.  EquaFon (2.1) can then be wri[en as 

 
                       (2.3) 

Thus, any magnetostaFc soluFon to the force-free field equaFons can be used to construct a 

soluFon to Maxwell’s equaFons with E parallel to B.  This is true in free space (where the 

soluFons are standing waves, which have a vanishing PoynFng vector) or when E generates an 

electric current parallel to an external magneFc field as in the experiment of Xiong, et al. [10]. 

 

3. The Chiral Anomaly and Current Relaxa=on Life=me 

The long axial current relaxaFon Fme in Dirac and Weyl semimetals is poorly understood and 

is thought to be due to near conservaFon of chiral charge.  Burkov [12] found that there is a 

coupling between the chiral and total charge density, but this leads to a large negaFve 

magnetoresistance only when the chiral charge density is a nearly conserved quanFty with a 

long relaxaFon Fme.  

 

Consider the form of the chiral anomaly given by Eq. (1.5).  Using  and integraFng 

over both space and Fme gives the helicity 

 
                       (3.1) 
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The integral on the right-hand side is the helicity of the field,  being the helicity density.  

It plays an important role in the relaxaFon of magneFc fields.  Because helicity is a topological 

invariant there are condiFons under which it is conserved, but here, as will be seen below, the 

chiral anomaly provides a mechanism for the decay of helicity that may help explain the long 

current relaxaFon Fme. 

 

Fukushima, et al. [13] have shown that a “chirality imbalance” in systems with charged chiral 

fermions will generate an electric current in an external magneFc field; they call this the 

“Chiral MagneFc Effect”.  Because this current also acts as a source for a magneFc field, the 

current flowing along the magneFc field will twist the magneFc flux and induce helicity into 

the field.  Xiong, et al. [1] have demonstrated the converse where an applied electric current 

causes a charge to flow from one chiral node to another of opposite chirality.  That is, 

applicaFon of  causes a charge “pumping” rate W between the two chiral Weyl nodes 

 
                       (3.2) 

where  indicates the chirality.  The “chiral imbalance” referred to above can be found 

by defining the number densiFes , where V is the volume and nL 

corresponds to the minus sign and nR to the plus.  By integraFng the total axial vector current 

 over space and Fme one can then obtain the difference in leA and right chiral parFcles; 

i.e., 

 

 
                       (3.3) 

The integrand of the integral on the right-hand side of this equaFon is the chiral anomaly given 

by Eq. (1.5).  Now differenFaFng Eq. (3.3) with respect to Fme gives 

 
                       (3.4) 

Note that the integraFon is now over a 3-volume.  If one now assumes the scalar potenFal 

vanishes and subsFtutes  into Eq. (3.4), and then integrates with respect to Fme, 

 may be expressed in terms of the helicity 
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As a result, Eq. (3.4) can be wri[en as 

 
                       (3.6) 

 A similar expression is readily derivable from the force-free field equaFon , 

where a is again a constant.  The magneFc field energy E due to currents J in a volume V is 

given by 

 

                       (3.7) 

By taking the dot product of A with the force-free field equaFons and using Eq. (3.7) one 

obtains 

 
                       (3.8) 

Now taking the derivaFve with respect to Fme and idenFfying dH/dt with the same quanFty 

in Eq. (3.6) gives 

 

 
                        (3.9) 

Thus, for force-free magneFc fields, the change in the difference of the number of leA and 

right-handed chiral parFcles can be related to the change in energy. 

 

The mechanism by which the chiral anomaly allows the decay of helicity can be found by 

taking the Fme derivaFve of the helicity density and expanding .  Using the 

homogeneous Maxwell equaFons, one can then derive the expression 
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This is a conFnuity equaFon where  is the helicity density,  is the helicity 

current (the flux of helicity), and  is a helicity “sink”.  The la[er can be seen to make 

sense by wriFng the integral form of Eq. (3.10):  

 
                    (3.11) 

The integral on the right-hand side of this equaFon represents the resisFve decay of helicity 

(  where  is the resisFvity and  is the current per unit area).  The rate of relaxaFon 

is determined by .  The integrand is proporFonal to the chiral anomaly of Eq. (1.5). 

 

Summary 

AAer discussion of some aspects of the chiral anomaly and its form when  is the 

electromagneFc field tensor, it was shown that in a conducFng medium such as Na3Bi when 

 the field must take the form of a force-free magneFc field.  It was then shown that the 

current relaxaFon Fme in such media will depend on the decay of helicity, which in turn 

depends on the chiral anomaly and the resisFvity of the medium.  It is likely that this 

mechanism has some bearing on the long axial current relaxaFon Fme in Dirac and Weyl 

semimetals. 
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