FORCE-FREE MAGNETIC FIELDS: ERRATA AND ADDITIONS AS OF 2026

Errata

p. 32. In Fig. 3.2, the expression for y should be ¥ = r\/7/2r j .1 (r). This changes the
2

height and width of the figures very slightly.

p. 73. In the paragraph after Eq. (4.33), 4™ line, the equation referred to should be Eq. (4.32).
p. 74. First full paragraph, Reference number to Hu should be 25.

p. 77. In the last line before Fig. 4.15, the o should be a y.

p. 94. In the last paragraph, line 4, the S should be a X.

To bring the book up to date, the following additions should be inserted.

ADDITION 1
p. 43. Just after Eq. (3.136) add the following from my paper A Force-Free Magnetic Field
Solution in Toroidal Coordinates, Physics of Plasmas (DOI: 10.1063/5.0146040, 2023).

Introduction
In topology, a torus is a surface of genus one, meaning it has one hole, and the relevant
guestion here is whether it is possible for the surface of a torus to have on it a non-singular
force-free magnetic field, meaning one that does not vanish at any point on the surface. Such
a field satisfies the force-free magnetic field equation V X B = aB. Arnold [1] has shown that
for force-free magnetic fields the field lines will lie on tori provided the field is non-singular
and ais not constant. In addition, a theorem by Hopf tells us that that the torus and the Klein
bottle are the only smooth, compact, connected surfaces without boundary allowing a vector

field without a singularity [2].

It is worth stating the Poincare-Hopf theorem somewhat more formally: If a smooth, compact,
connected surface S has on it a vector field with only isolated zeros, then its Euler
characteristic y(S) is an appropriate sum of the index of each zero. Any closed orientable

surface is topologically equivalent to a sphere with p-handles and Euler characteristic

x(S) =2-2p.



What the Poincare-Hopf theorem states is that only surfaces with Euler Characteristic zero can
have a vector field which is nowhere zero. Only the torus and Klein bottle have Euler
characteristic zero. Since real Klein bottles in 3-dimensional space cannot exist, only the torus

is relevant.

Below it will be shown that there is a non-singular force-free magnetic field restricted to the

surface of a torus, and under a restriction on the form of the field, to the interior as well.

Toroidal Coordinates and the Force-Free Relations
Solving for an exact solution to the force-free magnetic field equations in toroidal coordinates
is a difficult problem. An extensive history and the approaches used to solve both the exterior
and interior toroidal problem has been given by Marsh [3]. In particular, for the interior
problem no exact solution is known and one obtains a first order differential equation for «,

which can most likely only be dealt with by numerical methods.

There are numerous definitions for toroidal coordinates, and the one used here is shown in

Fig. 1
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Figure 1. Toroidal coordinates. Note that a? = R? — r2.

The relation between rectangular coordinates and toroidal coordinates is given by
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The metric coefficients for the coordinates are then
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In toroidal coordinates the force=free magnetic field equation, VX B = aB, yields the

following three equations

h,B, = — %au(hqud,),

1
h,B, = % 0,(hgBg),

ah
n
0, (hyBy) — 0,(h,B,) = m (hgBg)-
(3)
The divergence of B is given by

1

(4)
Imposing axial symmetry (04B4 = 0) and the requirement that V- B = 0 results in
0,(hyhyB,) + 0,(hgh,B,) = 0.
(5)
This means that « is only a function of hyBy; that is, @ = a(hyBg). The force-free relation

also implies that Va - B = 0. Since « is not a function of ¢p by symmetry, this implies in turn

that

(6)
Combining Eq. (6) with Egs. (3) yields the differential equation,
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This equation leads to an intractable equation for a, but will be simplified by imposing the

boundary condition on B, discussed below.

Boundary Conditions
The cylindrically symmetric Lundquist solution to the force-free field equations is shown in
Fig. 2. The Lundquist solution [4] is obtained by restricting a to a constant and further

restricting the magnetic field to the form B = [0, By (1), B,(7)].

The field equations will then give the solution B = A,[0, J;(ar), Jo(ar)], where Jo and J; are

Bessel functions and A is a constant.
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Figure 2. The Lundquist solution. The figure is drawn so that B, = Jo(a) = 0 on
the cylinder r=a.

If one chooses to apply the solution B = A,[0,/;(ar),/o(ar)] in a cylindrical region D
bounded by dD (as shown if Fig.2) such that J,(aa) = 0, the solution matches smoothly to an
external field given by B = [0, (a4,/7) J1(@a),0] and no surface currents are required to

satisfy the boundary condition.



As is the case for the cylindrically symmetric Lundquist solution, the force-free field in the
interior of a torus will create an azimuthal field around the torus, but if V- B = 0 the magnetic
field normal to the surface of the torus at u = py must vanish; i.e., B, (o) = 0. It is this
boundary condition, B, (¢y) = 0, that will be used in what follows to find the magnetic field—
and since it is force-free also the current—distribution on the surface of a toroid. B, does not
necessarily vanish in the interior of the torus, but if the form of the field is restricted to the
form B = [0, B, (), B4 (1)], then B, = 0 on each torus given by u = constant and the

solution found applies to the interior of the torus as well.

The Equation for a on the Surface of the Torus,
The following differential equation for a follows from that of Eq. (7) combined with the

assumption that B, vanishes everywhere.
2
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Equation (8) has, unsurprisingly, two solutions [5]
1
a=+ 2 [V(—cos2n + cosn coshu + cos?n coth?u — 2cosn coshyu coth?u

+ cosh?p coth?u — sinh?p)].
(9)
When 7 is held constant, say in the positive equation, and « plotted as a function of u, a grows
monotonically with increasing y. In what follows, it will be seen that the field winds around
the torus and the sign of a determines the handedness of the field while the period of the

twisting field is given by | «|.

With reference to Fig. 1, henceforth u = 1 and a = 2 will generally be used. The plot of both

solutions given by Eq. (9) for a is shown in Fig. 3.
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Figure 3. The plot of both solutions for « in Eq. (9) as a function of n where 0 <7 < 2m.

Figure 3 shows that the solutions for @ do not cover the full range of n from 0 < < 2n. For
0 <7 <0.529 and 5.753 < n < 2m, « is pure imaginary so that the solutions given in Eq. (9) are
not applicable. In these regions, the real part of a vanishes and since @ must be a real
function, the force-free relation V. X B = aB implies that the field B is given by the gradient
of a scalar function. It will be seen below that the transition from a force-free field to this

gradient field is smooth with B always greater than zero so that the field is non-singular.

The Force-Free Field on the Torus
With B, (uo) = 0, Egs. (3) imply that h, By, = C;, where C; is a constant so that By, = C; /hy.
In Eq. (4), V- B =0,B, =0, and cylindrical symmetry imply that d,(h,hsB,) = 0 so that
B, = C;/hghy,. Figure 4 shows By and B, for C1 = 1, C2 = 2, with u =1 and a=2.
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Figure 4. By and B, plotted for 0 < n < 27.



Where the curves for B, and B, cross the magnitude of these components are equal so that
the angle of their vector is at /4 radians with respect to ¢3 The magnitude of the components

depends on the choice of the constants C1 and C2.

Note thatintheregions 0 < 1 < 0.529 and 5.753 < 1 < 2m, where a is pure imaginary there
is no discontinuity in the field components and that the components B, and B, never vanish so
that the vector field they represent is not singular. Coupled with the fact that «is not constant,

the field satisfies Arnold's requirements for a force-free field on a torus.

The fact that this solution has a smooth transition from a force-free magnetic field to a field
given by the gradient of a scalar function in the regions 0 <7 < 0.529and 5.753 <n <2mn

is one of the most interesting features of the solution.

A vector plot of the vector B = (0, B4, B,) gives a better idea what the field looks like. This is

shown in Fig. 5.
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Figure 5. This is a plot of the vector field B = (0, By, B,) as a function of ¢ and n. The
magnitude of the field is given by the length of the arrows. For a given 1 the projection of the
vectors on the ¢-axis (the B, component), remains constant so that axial symmetry is
preserved. The angle of the vectors along a given n with the ¢-axis changes with ¢, although
that is somewhat difficult to see in the figure.



This field is unusual since both the pitch and magnitude change with location on the surface
of the torus. This should be compared to the Lundquist solution shown in Fig. 2 and its surface

atr=a.

Considering only the plot of Fig. 5 itself, without the "padding" around it, one can get idea of
how the field looks on a torus by identifying the ¢ sides of this plot and then identifying the

ends of the resulting cylinder.

Alternatively, one can use a stream plot, which loses the magnitude information. The stream

plot itself is shown in Fig 6 and its mapping onto the torus in Fig. 7.
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Figure 6. A stream plot of the vector field shown in Fig. 5. The magnitude information of Fig. 5
cannot be made a part of this plot.

The region where 0 < 1 < 0.529
and5.753 <n <2m

Figure 7. Two views of the stream plot of Fig. 6 mapped onto the torus. The gap seen in the first figure
is an artifact of the mapping and not a discontinuity in the field. The region on the perimeter of the
torus where the field becomes a gradient field is also indicated.



In producing the plots in Fig. 7 the axes and "padding" around the stream plot in Fig. 6 were
remove before doing the mapping. Unfortunately, the mapping program only recognizes the
removal of the axes--hence the gap seen particularly in the first figure. It is not real and only
an artifact of the mapping.
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ADDITION 2
Following the addition above add A Force-Free Magnetic Field in Cyclidal Coordinates from my

2023 paper, which is available at http://arxiv.org/abs/2310.17673.

INTRODUCTION

In plasma physics, where the condition for plasma equilibrium is given by (V X B) X B = Vp,
where p is the plasma pressure, the magnetic field will be force-free if Vp = 0. Force-free
means that the "self-force" or Lorentz force vanishes. Force-free magnetic field configurations
are difficult to find because (V X B) X B = 0 is a nonlinear equation. The plasma f is defined
as the ratio of the plasma pressure to the magnetic pressure p,,,. The force-free approximation
is valid for "low-beta" plasmas. Such plasmas are often found in an astrophysical context.
Here it is shown that force-free fields can not only have solutions for toroids, as was shown in

an earlier paper, but also for cyclides.

Dupin cyclides are those surfaces where the curvature lines are circles. The curvature lines
are given by the parametric variables u and v with one or the other being equal to a constant.

Of course, this is also true for tori, which—as will be discussed below—arise from setting two



of the parameters of an elliptic cyclide equal. An elliptic cyclide has a parametric

representation in three-dimensional Cartesian coordinates as [1]

d(c — a cosu cosv) + b?cosu

x= a — C COSU COSV
b sinu(a — dcosv)

Y = T4 —ccosucosv

; b sinv(c cosu — d)

a — c cosu cosv ’

0<uv<2m.

(Egs. 1)

Figure 1 gives an example of an elliptic cyclide and also a cutaway view of nested elliptic
cyclides. The lines of curvature are given by u and v with one or the other being equal to a
constant; i.e., for a constant value of v, u follows the curvature circle around the cyclide the
long way and for a constant value of u, v follows the curvature circle around the cyclide the

short way.

Focal conics can be seen as degenerate focal surfaces: Dupin cyclides are the only surfaces
where focal surfaces collapse to a pair of curves that are focal conics. In the case of the elliptic
cyclides the focal conics are an ellipse and a hyperbola. The plane of the hyperbola is
orthogonal to the plane containing the ellipse and the hyperbola is the focal conic to the

ellipse.
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Figure 1. (a) An elliptic cyclide. Note the perpendicular lines of curvature. (b) Parallel or
nested surfaces of an elliptic cyclide. The parameters of the surfaces are: a = 1, b = 0.98,
¢ =0.199 and d, which specifies each of the cyclide surfaces, is d = 0.30, 0.45, and 0.60. The
ellipse shown in the figure is discussed below [Source: Wikimedia Commons].



The parameters a, b, ¢, d in Egs. (1) are the semi-major and semi-minor axes of the ellipse and
c is its eccentricity. A Dupin cyclide can be considered to be a channel surface (the envelope
of a one-parameter family of spheres) and d would be the average radius of the generating

spheres. The equations of the ellipse and hyperbola are

;_*_ﬁ_l' Z=0,
x? Z?
2T b Y=o

Egs. (2)

The implicit equation [1], meaning that the equation is not solved for the variables x, y, or z,

is important for relating elliptic cyclides to tori of revolution. It is given by

(x%2 4+ y%2 4+ 22+ b? —d?)? — 4(ax — cd)? — 4b?*y? = 0.

Eq. (3)
In Eg. (3) some authors omit the factor 4 in the last term. The idea is to set a = b and show
that ¢ = 0 so that the ellipse becomes a circle and the hyperbola degenerates into a line so
that the corresponding degenerate cyclides are tori of revolution thus showing that the torus
belongs to the class of elliptic cyclides. However, Eq. (3) is very difficult to solve for ¢ because
the coefficients are inexact, but if one sets a = b =1 and d = 0.3, one can obtain a solution by
solving a corresponding exact system and “numericizing” the result. It turns out that c is

indeed equal to zero.

THE FORCE-FREE MAGNETIC FIELD EQUATIONS IN CYCLIDAL COORDINATES

The general solution to the force-free field equations in cyclidal coordinates is a very difficult
problem. The force-free field equation is V X B = aB, where the expressions for the curl or
divergence are non-illuminating complex functions of trigonometric functions that are very,
very long. Some simplifications must be imposed. Because the divergence of the magnetic
field must vanish, it is assumed here that the normal component of the magnetic field must
vanish on the surface of the cyclide. Strictly speaking, a cyclide does not have cylindrical

symmetry, making finding a solution almost impossible.



But, as discussed above, the lines of curvature of any Dupin cyclide are circles having the
parametric coordinates u and v. To obtain a viable solution to the force-free magnetic field
equations, cylindrical symmetry is assumed for each of the u circular coordinate lines upon
which v is a constant. This means that B, is constant along each u-circle. This is unusual

because the planes containing the u-circles where v equals a constant are not parallel.

If w represents the coordinate normal to the cyclidal surface, the metric coefficients in cyclidal

coordinates, which can be found from Egs. (1) are:

1
\/ ( (a — ¢ cos(u) cos(v))*

(sinz(u) (a b -d(a* - cz) cos(v))2 +

b? sinz(u) sinz(v) (a—-d cos(v))2 +

b? (a-d cos(v))2 (acos(u) —c cos(v))z)),
h, =

1
\/ ( (a — ¢ cos(u) cos(v))*

(cosz(u) sin?(v) (d (02 - az) +b¢c cos(u))2 +

a® b? sin®(u) sin*(v) (d - ¢ cos(u))? +

b* (d - ¢ cos(w))? (c cos(u) — a cos(v))z)),

h, =
((a® cos®(u) cos*(v) — 2 a c cos(u) cos(v) + b? sin?(u) cos*(v) +
b* sin’(») + ¢?) [ (a — ¢ cos(u) cos())?).

Egs. (4)
In arbitrary curvilinear coordinates the divergence of B is given by
1 .
V-B =—0,(/9B"),
Vg
Eq. (5)

where g = |gij|, i =u,v,w. The calculations for the force-free fields will be greatly

simplified if advantage is taken of the requirement that the normal component of the



magnetic field, B,,, must vanish on the surface of the cyclide. This allows the introduction of

a flux function ®. Equation (5) will then be satisfied if a function is introduced such that

J9B* =0,®,  [gB" =-0,9.
Eq. (6)

A Dupin cyclide has orthogonal coordinates, and for such coordinates g;; = gy =0,i # j;the
metric coefficients h; are defined by g;; = hf, g = 1/h?; \[g = hyh,h,,. And the physical

components are then h;B:. From Eq. (6) these may be written as

1
hyhy,

1
2,0, B,=-— a,®.

Bu= hah

Egs. (7)

What remains to do in order to use this approach of making use of a flux function is to find
the function itself and show that the fields of Eq. (7) are solutions of the force-free field
equations. However, finding the flux function in coordinates far simpler than cyclidal
coordinates can be a very difficult problem [2]. There is, however, a simpler way to find the

flux function: Equations (7) imply that

d® = h,h, B, — h,h,B,,
Eq. (8)

so that given test functions for B, and B, one can integrate Eq. (8) to find ®. Finding
appropriate test functions is a question of intuition. What is done here is to choose one that

looks interesting when mapped onto the cyclide. Here is a simple example that will used

B, =2/h,and B, = 10/h,,.
Egs. (9)

The flux function is then



o =2fhwdv—10fhwdu.

Eq. (10)

Given the coefficients a, b, ¢, d, the flux function @ is:

P =
1
)
8V2 a (a2 -b?% - cz) ArcTanh[ V2 (arccosivl) Tan[}] ] (a2 -c2Cos[2 V])
5 \/—2 a2+c2+c2Cos[2 V] .
(—2 a2+c?2+c?cos[2 v])3/2
(—2a (az—bz) clucos[v]?+a (az—bz) u (4a2—c2—c2Cos[2v]) +
2 (a?-b?) cucCos[u] Cos[v] (-2a%+c?+c?Cos[2vV]) +
4c (—a2 +cz) (—a2 + b2 +c2) Cos [V] Sin[u])/
((a—cCos[u] Cos[Vv]) (—2 a2+c2+c2Cos[2v])) -
1
?

8 ’2 a (a2 _bz _cz) ArcTanh[ﬁ(a+cc°s[u])Tan[;]

] (az—c2 Cos[2 u])

\/ -2a?%+c?+c?2Cos[2u]
) 3/2

+
(—2 a?2+c?2+c?cCos[2u]

(—Za (az-bz) c?vcos[u]?+a (az—bz) v (4 aZ-c?-¢? Cos[2u]) +
(a2 —bz) ¢l vCos[u]3 Cos[Vv] +

c Cos[u] (—i (az—bz) v (8a2—3c2—3c2Cos[2u]) Cos[Vv] +

4 (az—cz) (az—bz—cz) Sin[v]))/
((—2 a2+c2+c2Cos[2u]) (a-cCos[u] Cos[v]))

Eq. (11)



Putting in the numerical value for the constantsof a =1, b =0.98, c=0.199, and d = 0.3, one
can compute the flux function. The stream and vector plots of the fields in Egs. (9) are shown

below and then mapped onto the cyclide:
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Figure 2. Stream plot of the magnetic field components given by Egs. (9). The
u-axis is along the abscissa and the v-coordinate along the ordinate.
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Figure 3. Vector plot of the magnetic field components given by Egs. (9). The u-
axis is again along the abscissa and the v-coordinate along the ordinate.



The stream plot mapped onto the cyclide, using the numerical values of the constants given

above, is shown in Fig. 4, and the vector plot on the cyclide by Fig. 5.
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Figure 4. Stream plot of the magnetic field components specified by the flux function ®, given
by Eqg. (11), mapped onto the cyclidal surface.
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Figure 5. Vector plot of the magnetic field components specified by the flux function @, given
by Eqg. (11), mapped onto the cyclidal surface.

It remains to show that the force-free field equations are satisfied by the magnetic fields of

Egs. (9) by finding an expression for the associated function a.



The force-free field equation in 3-dimensional space is given by V X B = aB; but it has been
assumed here that the normal component of the magnetic field must vanish on the surface
of the cyclide so that the divergence of the magnetic field vanishes. This means that the field
equation must be evaluated on the surface of the cyclide and the 3-dimensional curl cannot

be used.

Consequently, on the surface one must use the 2-dimensional component of the curl, also

known as the circulation in another context. It is given by

1
(V x B)w = W (au(hva) - av(huBu))-

Eq. (12)
The full equation for (V X B),, with the meanings of the symbols inserted is very long and

there is little if any insight to be gained. It is available in the original paper.

The force-free field equation to be solved for the function « is then

1
i Ou(hB) = 9y (huB) = a(By + By

Eq. (13)

The solution for a is again very long, offering no insight, and it is available in the original paper.

Figures 6(a) and 6(b) show 3-dimensional plots of the function . The cross sections at
u = 0 and u = 27 match since they represent the same cross section on the cyclide and the
same is true for v = 0 and v = 2m. Note the changes in sign of the function «. In the regions

where «a is zero, the curl vanishes and the magnetic field is the gradient of a scalar function.
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Figure 6. 3-dimensional plots of the solution for the function & of Eq. (13). The variables u
and v are shown as capitals in the figures to make them easier to read.

The solution given above is then an example of a solution to the problem of finding a force-

free magnetic field on the surface of a cyclide.

CYCLIDE TO TOROID
As mentioned in the Introduction, the torus belongs to the class of elliptic cyclides. By setting
the coefficients a = b and ¢ = 0, the flux function approach to finding solutions used above
should yield a solution on a torus. It is shown in this section that that is indeed true. To make
comparison easier the values of the constants are now chosentobea=b=1,¢c=0,and d =

0.3. With these values the metric coefficients of Egs. (4) become

h, = \/cosz(u)(l — 0.3 cos(v))? + sin?(u)(1 — 0.3 cos(v))?,

h, = \/0.09sin2 (u)sin?(v) + 0.09cos?(u)sin?(v) + 0.09cos?(v),
h,, = cos?(u)cos?(v) + sin?(u)cos?(v) + sin?(v).
Egs. (14)
And, using the same magnet field components as used above, we obtain for the flux function

the simple result ® = —10u + 2v.

The stream and vector plots for the degenerate cyclide are shown in Fig. (7)
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Figure 7. Stream and vector plots of the magnetic field components given by
Egs. (9), but in this case for the degenerate cyclide. The u-axis is again along the
abscissa and the v-coordinate along the ordinate.

When the stream and vector plots are mapped onto the degenerate cyclide, as shown in Figs.

(8), it is obvious that the degenerate cyclide is indeed a torus.
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Figure 8. Stream and vector plots of the magnetic field components given by
Egs. (9), mapped onto the degenerate cyclide.

The plot of the magnetic field mapped on the torus is different and much less complex than
that found in Reference [3]. The flux function approach can be used to find many other force-

free magnetic field solutions for the torus.

In order to show that this example is a solution to the force-free field equations, it must be
demonstrated that there exists an appropriate function a. Solving for the function a using

Eq. (13) results in



a =

(i

[— ((1 (0.6‘ cos?(u) sin(v) (1." = 0.3 cos(v)) +

0.6 sin’(u) sin(v) (1. — 0.3 cos(»)))) /

(\/ 0.09" sin®(x) sin®(v) + 0.09" cos?(u) sin®(v) + 0.09" cos?(v)

\/ cos’(u) (1. — 0.3" cos(»))? + sin®(u) (1." — 0.3" cos(»))’ )) +

((0.18‘ cos®(u) sin(v) cos(v) + 0.18" sin®(u) sin(v) cos(v) —

0.18 sin(v) cos(»))

\/ cos’(u) (1. — 0.3' cos(»))” +sin®(u) (1. — 0.3" cos(»))’ ) /

(0.09° sin?(w) sin?(») + 0.09" cos*(u) sin*(») + 0.09" cos*(»)** + 0:)) /

[\/ 0.09" sin*(x) sin>(v) + 0.09" cos?(u) sin®(v) + 0.09" cos>(»)

20

\/ 0.09" sin(u) sin?(v) + 0.09" cos?(u) sin(v) + 0.09" cos2(v)

10
cos(u) cos?(v) + sin(u) cos?(v) + sin?(v) ]

\/ cos>(u) (1. = 0.3 cos(»))? +sin(w) (1. — 0.3" cos(v))? ]

Eq. (15)

Here is a 3-dimensional plot of the function a
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Figure 9. A 3-dimensional plot of the function a for the degenerate
cyclide/torus.

The cross sections at u = 0 and u = 2w match since they represent the same cross section
on the torus and the same is true for v = 0 and v = 2. Note the changes in sign of the
function a. Where «a is zero, for the degenerate cyclide/torus at v = 0, m, and 2, the curl

vanishes and the magnetic field is the gradient of a scalar function.

SUMMARY
Recently, the problem of finding force-free magnetic fields on a torus has been solved [2], and
since the torus can be viewed as a degenerate cyclide the question naturally arises as to
whether the more general problem of finding a force-free magnetic field on the surface of a
cyclide can be solved for a Dupin cyclide. The torus has cylindrical symmetry which greatly
simplifies the problem, but this is not the case for a cyclide. However, the lines of curvature
of any Dupin cyclide are circles, allowing the introduction of a limited form of cylindrical
symmetry for each of the u circular coordinate lines, upon which v is a constant. This results
in a greatly simplified problem for finding a solution for a magnetic field on the cyclide, but it
should be remembered that the planes containing the u-circles where v is constant are not

parallel.

If the magnetic field is independent of one coordinate, chosen above to be the normal to the
surface of the cyclide, the divergence of the magnetic field will vanish if a flux function —see
Eq. (6)—is introduced. Since the coordinates introduced for the cyclide are orthogonal, the

components of the magnetic field may be written as in Eqg. (7). By using test functions for B,



and B,, one can find ®. The previous section explains the choice of the simple test functions

specified in Egs. (9).

Since it was assumed that the normal component of the magnetic field vanishes on the surface
of the cyclide so as to have the divergence of the magnetic field vanish, the
3-dimensional form of the curl cannot be used in the force-free field equation. Instead, one
must use the 2-dimensional component of the curl to obtain Eq. (13) which is then solved for
the function a. Figure (6) shows that this function has negative values for some regions on
the surface of the cyclide. In the regions where « is zero, the curl vanishes and the magnetic

field is the gradient of a scalar function.
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ADDITION 3
P.117. In the Applications chapter after Section 6.2 add “The chiral anomaly, Dirac and Weyl
semimetals, and force-free magnetic fields” from my 2017 paper in the Canadian Journal of

Physics available at http://arxiv.org/abs/1605.09214.

INTRODUCTION

A 2015 paper by Xiong, et al. [1] reported that the chiral anomaly, usually considered a purely
guantum mechanical phenomenon, can be seen in the Dirac semimetal NasBi. The
phenomenon appears in this material when the applied electric field and magnetic fields are
parallel. Because new macroscopic quantum effects are rare it is important to explore the

implications of this observation.

Some terminology and basics:
When the mass is set equal to zero in the Dirac equation it decouples into two equations

known as the Weyl equations that have two component spinors as solutions; these have

chiralities of ¥ = 1. Now define the Hamiltonian of the Dirac semimetal H(k) in terms of the



spinor basis {I, o1, oy, o3}. If there is a ko such that the Hamiltonian satisfies
H(ko) = 0, in the vicinity of ko the continuity of Hamiltonian implies that it can be written as
H(k) =h(k)+o. If hj are the components of h, the band structure of the Hamiltonian,
E.(k) = im, is called the Dirac cone, and if h(k) is a linear function of k, the

cone in h-space also forms a cone in k-space. An example of a Dirac cone is shown in Fig. 1(a).
E
(a) (b)

Figure 1. (a) A Dirac cone. The origin is said to have a Dirac node, and the Fermi level is located

kZ

~ky, k,

where the apexes meet. The upper cone represents the conduction band and the lower the
valence band. (b) When a magnetic field is applied to a Dirac semimetal it breaks the symmetry
of the crystal and causes a Dirac node to split into two chiral Weyl nodes.

The Dirac cone illustrated in Fig. 1(a) corresponds to a Dirac semimetal because there is no
gap between the two cones, which would become hyperbolae when a gap is present. A
normal insulator has a gap and a three-dimensional topological insulator is characterized by

the bulk of the material having a gap while the surface does not.

A Dirac semimetal, such as NasBi, is a three-dimensional system with a Dirac cone having a
double degeneracy at the Fermi energy; a Weyl semimetal has its valence and conduction
bands touching each other at isolated points, around which the band structure forms non-
degenerate three dimensional Dirac cones. The apexes of the Dirac cones are called Weyl
nodes. Low energy quasiparticle excitations in Weyl semimetals give the first example of the

appearance of massless Weyl fermions in nature.



Figure 1(b) shows the band structure of a Dirac semimetal when a strong magnetic field is
applied. If there is no electric field present, chirality is preserved at the two nodes. If,

however, an electric field is applied charge will flow between the nodes, and the chiral
anomaly will not vanish. The charge transfer rate depends on the chirality ¥ (see Eq. (3.2)

below), The standard textbooks on topological insulators expand on these definitions and on

the topological nature of Weyl nodes and their relation to Berry curvature [2,3].

The first section below explains some aspects of the chiral anomaly and the second explains
the connection with force-free magnetic fields and their relevance to the chiral anomaly
observed in the semimetal NazBi. The third section looks at the relaxation of such fields in a

medium with a non-zero resistivity.

1. Chiral Anomaly

In classical physics there is said to be a symmetry when the action S(y) is invariant under the

¥)

transformation w — y + Sy, while in quantum mechanics the path integral fD’F e must

be invariant for a symmetry to be present. The transformation from classical to quantum
mechanics does not always retain a given symmetry. Otherwise said: Symmetries in terms of
classical, commuting variables may not be retained when expressed in terms on non-
commuting quantum variables. Such a symmetry is said to have a “quantum symmetry

anomaly”.

The quantum symmetry anomaly of interest here is the axial anomaly, which violates the
conservation of axial current. The non-conservation of chirality was discovered in the late
1960s by Adler [4], and Bell and Jackiw, [5]. There is a detailed discussion of the origins of the
phenomenon in the textbook by Zee [6], and a very clear explication relevant to this work has

been given by Jackiw [7].

The axial vector current is defined as J5 = ¢y 7“7’ . For massless fermions, J* satisfies
the continuity equation 9,.J“=(0. Now define P.=+{I+7°) and ¥.=P.¢¥ so that

Y°¥. = xy.; thenif ¥ is a classical or quantum field operator the transformation



Y- Y.ty
(1.1)
is a map between different solutions of iy“d,.¥.=0. If one now couples this equation to
an external gauge field 4,,
iy (3. +iA,(z)) ¥ (z) =0,
(1.2)
then for a single Fermi field coupling to A, the axial vector current .J¢ obeys the anomalous

continuity equation

0.0t = e+ I (@) Py z),

(1.3)
where = = 7 €™ F,; is the dual of the field tensor F,, (z) = 9.-A,(z) —3.-A,(z). For non-
Abelian fields, A.=)_ A T. and the T, are anti-Hermitian matrices satisfying the Lie

algebra commutators with structure constants f.; i.e., [T o) =Y f.-T.. Note that the

structure constants, fu', are normalized by ¢r7T.T, = —6./2. For non-Abelian fields, Eq. (1.3)
becomes

1 v
OJs = Wt?“ « F* (z)F., ().
(1.4)
The chiral anomaly in quantum field theory comes from two triangle Feynman diagrams

associated with the decay of the #° particle [6].

If A, corresponds to the electromagnetic four potential, then Eq. (1.3) becomes

1 -
47

9 J5 = E-B.

(1.5)
It is this form of the anomaly that is responsible for the observations of Xiong, et al. when the
electric and magnetic fields in NazBi have collinear components. Note that the anomaly
vanishes when the electric and magnetic fields are perpendicular; its non- vanishing depends
on the component of B parallel to E. If the medium cannot sustain a Lorentz force the fields
must be either perpendicular or parallel. It is the parallel case that is of interest here. The
insight that the chiral anomaly should appear in crystals is due to Nielsen and Ninomiya [8].

For a topical review of the electromagnetic response of Weyl semimetals see Burkov [9].



2. Chiral Anomaly and Force-Free Magnetic Fields

This section gives a short introduction to force-free magnetic fields where the current is
parallel to the magnetic field, implying that the Lorentz force vanishes. In the experiment by
Xiong, et al. [10], the same condition, that the current produced by an applied electric field
be parallel to the magnetic field, is also required for the non-vanishing of the chiral anomaly.
The origin of the current [11] is the E-field parallel to B, which breaks chiral symmetry and

results in an axial current.

In the Dirac semimetal NasBi the effect of the anomaly was observed when the applied electric
field and magnetic field were aligned. Xiong, et al. suggested that the large negative
magnetoresistance observed implied a long relaxation time for the current. Since the non-
vanishing of the anomaly depends only on E | B not vanishing, the configuration of the field
responsible for the anomaly interior to the NasBi crystal is likely to be force-free. This is
because the current associated with E is parallel to B, and this current is itself a source for an
azimuthal magnetic field that combines with the longitudinal magnetic field applied to the
NazBi to twist the flux. It is force-free because the current associated with E is parallel to the

twisted field.

It will be seen below that force-free fields have a helicity associated with them that is related
to the energy stored in the field. This opens up the possibility that the decay of such fields
may explain the long axial current relaxation time in Dirac and Weyl semimetals without

invoking quantum mechanical processes.

Fields with E | B are closely related to the force-free magnetic field equations V X B = ¢B
with constant a [11]. In the experiment of Xiong, et al. [10], the applied electric field produces
a current so that, because it is only the component of the electric field parallel to the applied
magnetic field that yields a non-zero chiral anomaly, this current is parallel to the applied
magnetic field. This means that the field is force-free. As a consequence, since the electric
field corresponds to a current, E | B means that E = B, where fis a scalar function. If Sis

assumed to be a constant, Maxwell’s equations can be used to show that 8 = *%, so there



are no real solutions. If fis assumed to only be a function of time, E = B and Maxwell’s
equations show that
B

VXB=WB

(2.1)
This equation tells us is that if E = f(t) B, then B must satisfy the force-free field equation. The
function 8(B*+1)" in Eq. (2.1) is actually a constant, call it ¢, as is shown in Appendix 1 of

[11]; and this restricts the form of fto

B=i Be ' — Ae™
Befmt_{_Aemt .

(2.2)
If A or B vanishes, 8 = *% so that there are no real solutions; If A= £B, then 8 =tanat or
B = cotat respectively. Equation (2.1) can then be written as

VX B(r) =aB(r).

(2.3)
Thus, any magnetostatic solution to the force-free field equations can be used to construct a
solution to Maxwell’s equations with E parallel to B. This is true in free space (where the
solutions are standing waves, which have a vanishing Poynting vector) or when E generates an

electric current parallel to an external magnetic field as in the experiment of Xiong, et al. [10].

3. The Chiral Anomaly and Current Relaxation Lifetime

The long axial current relaxation time in Dirac and Weyl semimetals is poorly understood and
is thought to be due to near conservation of chiral charge. Burkov [12] found that there is a
coupling between the chiral and total charge density, but this leads to a large negative
magnetoresistance only when the chiral charge density is a nearly conserved quantity with a

long relaxation time.

Consider the form of the chiral anomaly given by Eq. (1.5). Using E = —9tA and integrating

over both space and time gives the helicity
H-—[dz(4-B).

(3.1)



The integral on the right-hand side is the helicity of the field, A +B being the helicity density.
It plays an important role in the relaxation of magnetic fields. Because helicity is a topological
invariant there are conditions under which it is conserved, but here, as will be seen below, the
chiral anomaly provides a mechanism for the decay of helicity that may help explain the long

current relaxation time.

Fukushima, et al. [13] have shown that a “chirality imbalance” in systems with charged chiral
fermions will generate an electric current in an external magnetic field; they call this the
“Chiral Magnetic Effect”. Because this current also acts as a source for a magnetic field, the
current flowing along the magnetic field will twist the magnetic flux and induce helicity into
the field. Xiong, et al. [1] have demonstrated the converse where an applied electric current
causes a charge to flow from one chiral node to another of opposite chirality. That is,

application of E | B causes a charge “pumping” rate W between the two chiral Weyl nodes
63
W=2 g BB,
(3.2)
where X = +1 indicates the chirality. The “chiral imbalance” referred to above can be found
by defining the number densities .z = %f d’zy (1 +7°)y¥, where Vis the volume and n;

corresponds to the minus sign and ng to the plus. By integrating the total axial vector current
J% over space and time one can then obtain the difference in left and right chiral particles;

i.e.,

m—ny= [ d'c@.7) =1z [ d'z(E-B).

(3.3)
The integrand of the integral on the right-hand side of this equation is the chiral anomaly given

by Eq. (1.5). Now differentiating Eq. (3.3) with respect to time gives

b (n—n) == [ d'2(E-B).
(3.4)
Note that the integration is now over a 3-volume. If one now assumes the scalar potential
vanishes and substitutes E = —9,4 into Eq. (3.4), and then integrates with respect to time,

(n,—nx) may be expressed in terms of the helicity



L [¢r4-B) =—1H

o= Mn ="y 4
(3.5)
As a result, Eq. (3.4) can be written as

i( B ):_1&(
de \r T Mk Ar’ dt -

(3.6)
A similar expression is readily derivable from the force-free field equation V X B = ¢B,
where « is again a constant. The magnetic field energy E due to currents J in a volume Vis
given by
E=1[J-Adv.

14
(3.7)
By taking the dot product of A with the force-free field equations and using Eq. (3.7) one

obtains

EzéafA-BdVZ%aﬂ-[
14

(3.8)

Now taking the derivative with respect to time and identifying dH/dt with the same quantity

in Eq. (3.6) gives

4 (= my) = -t AE
dt n. nR 271'2(1 dt .

(3.9)
Thus, for force-free magnetic fields, the change in the difference of the number of left and

right-handed chiral particles can be related to the change in energy.

The mechanism by which the chiral anomaly allows the decay of helicity can be found by
taking the time derivative of the helicity density and expanding 9.(A+B). Using the

homogeneous Maxwell equations, one can then derive the expression

9.(A*B)+V.(®B+AXE)=—2E-B.
(3.10)



This is a continuity equation where A * B is the helicity density, (®PB+ A X E) is the helicity
current (the flux of helicity), and —2E + B is a helicity “sink”. The latter can be seen to make

sense by writing the integral form of Eq. (3.10):

o, [A-Bdv+ [ V-(®@B+AXE)dv=—2 [ E-BaV.
\4 Vv |4

(3.11)
The integral on the right-hand side of this equation represents the resistive decay of helicity
(E= 775' where 77 is the resistivity and j is the current per unit area). The rate of relaxation

is determined by 7. The integrand is proportional to the chiral anomaly of Eq. (1.5).

Summary

After discussion of some aspects of the chiral anomaly and its form when F,, is the
electromagnetic field tensor, it was shown that in a conducting medium such as NaszBi when
E | B the field must take the form of a force-free magnetic field. It was then shown that the
current relaxation time in such media will depend on the decay of helicity, which in turn
depends on the chiral anomaly and the resistivity of the medium. It is likely that this
mechanism has some bearing on the long axial current relaxation time in Dirac and Weyl

semimetals.
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