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The problem of obtaining a uniform magnetic field within a nondegenerate ellipsoid by the use of an
appropriate surface current distribution is investigated. The curves of constant current on the surface of the
ellipsoid are determined. The relation of the present work to the design of deflection coils is discussed.

PACS numbers: 03.50.C, 07.65.

. INTRODUCTION

Methods of producing homogeneous magnetic fields
within a given volume have a long history,'? Tseitlin®
has treated the problem for the case of an ellipsoid of
revolution with the additional requirement that the ex-
ternal field vanish, and utilizing the hydrodynamic
analogy* he has discussed the problem for an arbitrary
closed volume, Laslett® has approached the problem,
also with the requirement that the external field vanish,
utilizing the well-known relation®
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(conventional symbols will be used throughout this
paper) and applying a gauge transformation to eliminate
the last term with its physically obscure interpretation,
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The use of current sheets to produce bounded fields
has also been treated by Richardson’ in the cases where
the boundary condition

nx(H* -H)=}

can be simplified by having H*=0 or normal to the
sheet (e.g., when the sheet is shrouded in a material
such as iron having a large permeability).

The purpose here is to investigate the problem of the
distribution of windings needed to obtain a uniform field
within an ellipsoid without the additional requirement
of having the field vanish outside. This problem is
known to be soluble for ellipsoids of revolution
(spheroids) but has not been fully treated for general
ellipsoids.

Section II introduces a “current function” ¢, and a
specific form for this function is chosen. In Sec. III the
components of the vector potential are found satisfying
in addition to Laplace’s equation the boundary conditions
with the surface currents given by the specific choice of
&. It is shown that the vector potential thus determined
gives a uniform field within the ellipsoid. In Sec. IV the
form of the curves of constant current on the surface of
the ellipsoid is investigated, and Sec. V, in addition to
containing some practical considerations, relates the
present work to existing practice in the design of deflec-
tion coils,
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I. CURRENT FUNCTION &

In order to motivate the introduction of &, consider
first the example of a plane current sheet. The equation
of continuity becomes

du dv

vey=o 4 5o =0,

Zy @2.1)

where the surface current j= (u,»). This is the condi-
tion that the differential u# dy — v dx should be exact.
There exists therefore a function & such that

2.2)

The function & so introduced is called the current
function.

In order to see how this can be generalized to three
dimensions, one writes the surface current as
=(u,v,0). Since V-j=0, j may be written as the curl
of some vector field a. As we expect the curl of a to be
in the X-Y plane, a must be in the direction of the nor-
mal which is here z. Then a=&n= (0,0, &), Taking the
curl then gives Eqgs. (2.2).

In general if V -j=0 on some surface, we may write
i as the curl of some vector field a. Letting a=&n we
have j=Vx dn=Vé&xn+&Vx#n, For a closed surface
given by F=0 the normal vector is #=VF/|VFI|, so
that the current lines will be the closed curves &
= const, and j will be given by

j=vaexa, 2.3)
For an ellipsoid we have

FE;C—z §2+__1 0, (2.4)
so that the normal vector is

N VF 2 + 2L 25

= = — 2.
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where
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We now choose the current function to be & = ~ Kz, The
components of the surface current are then

- 2Ky = 2Kx -

1= RIwE Iy T AIvE 0 e @.6)
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I1l. DEMONSTRATION THAT ®=-K z YIELDS A
UNIFORM INTERIOR FIELD

In magnetostatics surface currents normally arise as
a result of volume distributions of current, and it is
therefore conventional to emphasize the magnetization
vector M, This has the unfortunate effect of obscuring
the analogy which exists between electrostatics and
magnetostatics. Here we write the boundary conditions
for the vector potential explicitly in terms of the sur-
face currents:

0A* aA'
A = .1
on _ on ol ®.1)
The superscripts + and — designate A just outside and
just inside the ellipsoid, respectively. For convenience,
(3.1) in terms of components is written

dA;] 9A7 . .

—5;‘ —a—n-z—uo]“ i=2x,¥,2. (3.2)
In addition to (3.2) the A, must satisfy Laplace’s equa-
tion V24, =0, which is here most easily solved in

ellipsoidal coordinates. These are specified by

xz

+
a’+ 9
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240"

~1=0, 0=x,7,¢ (3.3)

which defines a triple orthogonal system of confocal
quadrics;
A>-—c? ellipsoids,
~c?>n>-b% hyperboloid of one sheet,
~-b%>¢>-a® hyperboloid of two sheets,

In terms of these coordinates, Laplace’s equation is
expressible as

-0, % (£, 52) + - r, 2 (R, 52)

+ =Rz (Rc Z"z) 0, (3.4)

where

=[@?+ 6)(B>+ 0)(c®+ 8)]*/2, (3.5)

If the family of confocal ellipsoids parameterized by
are to be equipotentials we must have ¢=¢ (1) and (3.4)
becomes

a a
H(®32)-o. .6
Integrating,
R ‘;—d) = const;
so that
¢ =const [~ d\/R,, (8.7

which is an elliptic integral of the first kind. Consider-
ing the boundary conditions (3,2) and the form of the
surface currents (2,8) we want to consider solutions to
(3.6), for example for A,, of the form A =xX where
X=2X(1). Laplace’s equation VZA =0 becomes

(3.8)

(RA%) X=- (b2+>\)(c2+x)75 ,
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which can be written

d ax 1
ax 1°g<R*K)—' 2z’

from which

- dx
X:const-/; —_—(a2+)x)R,. . 3.9)

This is an elliptic integral of the second kind, Note that
(3.9) can be written

d¢ (3.10)

X==2G27

where ¢ is given by (3.7). Define

$o= f, dr/R,. (3.11)
The conditions on A, can be satisfied by taking
+ de\ (do,\ -
Ay=C0X(d‘—7)(da20> ’ =Cyx, (3.12)

where C, is a constant to be determined. Note that A;
reduces to Cyx on the surface of the ellipsoid where
A=0. The boundary conditions (3.2) may now be used to
determine C,. First

dAY -
Ay s ovat
an n VAy
—cfl2)(2)] 5 v (49)(d8s)
_Co{[(daz)<da2 hon Vix)+xn-v da? El—f
—- 2C, i_;.x d¢0-1_’f_ d_k.pl@_.;._z_g_)‘. 1@
T iVFi|a? da®)\a® dx B dy c% dz)dx da®|®
(3.13)
Now for A=0
dds__1d (" o 11 .14
dx da®~ " 2 dx @+MR, 2 a%c ° :
Furthermore it can be shown from (3.3) with A =0 that
D_B 1 4 8 1 a_8z I
de & \VFI2?' gy~ B2 IVFI?® dz  ¢® IVFI2°
(3.15)
Equations (3.13)—(3. 15) together yield
dA; ZC ¢
_2 .
Vil a { [ bc(daz)] } (3.16)
From (3.12),
d4; _ 2C, x
n~ |VF| a®° 3.17)

Applying the boundary cond1t1ons (3.2) to (3.16) and
(3.17), we have

dA' _d4y _ 2C, abe (qu) _
@ " dn = IVFT 2 da®)| = Mol
= Uo(2Kx/a?|VF)). (3.18)
The constant C, is then
Co= /.L(,Kabc(dq) ) (3.19)
and A; is therefore given by
A= pKabe (%‘?g)x (3.20)
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In an exactly similar manner A; is found to be

d
A;:—;»1(,Is’abc(d—i2)y° (3.21)
and A; is zero by the third of Eqs. (2.6). The field in-
side the ellipsoid is then given by B=V XA which from
(3.20) and (3.21) is

B= u&lch(qﬁ + @Q> k,

dbz (3o 22)

so that the internal field is seen to be uniform and in
the z direction,

IV. CURVES OF CONSTANT CURRENT

The choice of ®= - Kz for the current function and
(2. 3) tell us that the curves of constant current are
such that 71X 2= const, This is equivalent to requiring
that 7+-%2=const=d. The variation of 4 in the range
0<d=<1 gives the set of curves of constant current
covering the ellipsoid. From (2.5),

w o~ oz 2 ,2\-1/2
n'k=c—2‘(zlj +%3+?) =d. 4.1)
This may be written
1 22
—+z4-(?-1)c—4=0, (4.2)

which is the equation of a real quadric cone. The inter-
section of this cone with the original ellipsoid (2. 4)
gives the required curve, which in general is of the
fourth order. Instead of solving for its equation we use
(2.4) to eliminate explicit reference to z:

¢t &2 2 fc2 &L y?
(G755 1) (1) h=1.
This is the equation of an ellipse with semiaxes

c? )-1/2 (2 42 )-1/2‘
a(azl—de+1 and bb21 J3+1 ;

i.e., the projection on the x-y plane of the curve of
intersection of the quadric cone with the ellipsoid is an
ellipse with the given semiaxes, With this in mind the
practical problem of distributing windings on the
ellipsoid becomes tractable,

4.3)

The investigation of the 2z variation of the windings is
facilitated by introducing »n -k =cos#f and the parametri-
zation of the ellipsoid

x?=a? sina cos?B,

y2=b?sin*a sin®p,

z%=c?cos®a. (4.4)
With (4.1) this yields
cot?a=c? cotze[—l—2 + (—15 - -1.5) sinzﬁ]. (4.5)
a b a
Note that (4.3) and (4.4) immediately give (4.5). For

a=D» the z variation vanishes., This corresponds to the
case of a spheroid where the internal field will be uni-
form if

[1+(a2/c?) cot?a]-1/?, 4.6)

which is equivalent, in terms of windings, to having a

Tocsing=
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constant number of amp-turns per unit length along the
z axis.® If in addition a=c¢ we have a sphere where
o= 99

V. SOME PRACTICAL CONSIDERATIONS

This work is of practical use, for example, in S-ray
spectroscopy® and deflection coil design. In the latter
case current practice’® makes use of windings of the
distributed type utilizing what is known as a sine dis-
tribution, In both these applications, and we will dis-
cuss only the second, it is advantageous to produce as
uniform a magnetic field as possible. This is normally
achieved by the use of Helmholtz coils or coils having
“saddle” shapes. In the latter case the optimum geom-
etry has been determined by Ginsberg and Melchner, !’
The use of Helmholtz coils suffers from two drawbacks:
First it is difficult, if not impossible in most cases, to
maintain the appropriate spacing for the coils in appli-
cations where both X and Y deflections are required.
Second, both saddle-shaped coils and Helmholtz coils
give only a small usable volume of uniform field'?
(typically 0.2 cubic radii for a 1% deviation).

These problems are readily overcome using the dis-
tributed windings referred to earlier. In terms of Sec.
II such windings follow the curves & =const and the
magnitude of the current is reflected by the density of
windings, The sine distribution of Ref. 10 is obtained
by distributing saddle-shaped coils over a cylinder.
This corresponds to setting a=«, b=c, B=3rin Eq,
(4.5), giving o= 6. The distribution of windings is then
such that the number of turns per angular element at
the circumference of the circular cross section is
proportional to siné, (The range of 6 is O0< 6<17,)

Normally two windings arranged 47 apart are required
to obtain both X and Y deflection. If both are distributed
windings having sine distributions, we have

N (6)« siné
N,(¢) o< sing,

where N, and N, are number densities as a function of
angle and ¢= @+ Ln. Since sing =sin(6+ 37)=cosb, we
have

N,(8)+ N,(¢) < sinf+ cosé,

This sum is approximately constant, which implies that
if both coils are wound on the same form the number
density around the circumference will also be approxi-
mately constant. The purpose of this is {o obtain identi-
cal characteristics for both the X and Y coils.,

Since magnetic fields obey the superposition principle,
a field of any arbitrary orientation may be obtained by
setting the respective currents in the X, Y, and Z coils
proportional to the direction cosine of the desired
orientation,
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