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Introduction. 

 It has been shown in the predecessor to this paper [1] that if the source of the field 

is the singularity of the vacuum Reissner-Nordström solution of the coupled Einstein-

Maxwell field equations, only the Schwarzschild mass is seen at infinity, with the charge 

and its electric field making no contribution.  It was also shown that if the charge alone is 

the source of the field, the effective mass seen at infinity vanishes.  These results are a 

direct consequence of charge having the properties of a negative mass while the electric 

field produced by the charge has a positive effective mass.  Near the time-like singularity, 

which is the source of the field, space-time has a negative curvature.  The effective mass 

within a sphere of radius R was found to be 

 

                                                                                        (1)
 

 

On the other hand, the effective mass of the electric field outside this sphere is given by 

 

                                                                                                          (2)
 

 

This results in 

 

                                                                          (3) 

 

Thus, the “negative mass” associated with the charge Q is exactly compensated by the 

effective mass contained in the electric field present in the volume exterior to the surface 

r = R.  If the radius r = R→∞, the effective mass contained within the surface at infinity 

is m, the Schwarzschild or, equivalently, the ADM mass. 

 These results are extended here to the Kerr-Newman solution.  Because of the 

axial rather than spherical symmetry, the situation is far more complex than in the case of 

the Reissner-Nordström solution.  The Kerr-Newman solution to the field equations is, of 
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course, the charged Kerr solution, and like the Kerr solution, is asymptotically flat.  

Being axially symmetric, it has two independent, commuting Killing vectors and these 

have been used [2, 3, 4] in Komar’s formula [5] to derive conserved quantities. 

 The next section addresses the question of spatial curvature near the singularity 

and this is followed by a discussion of effective mass. 

 

Curvature in the Kerr-Newman solution 

 Vacuum solutions to the Einstein field equations satisfy Rµν = 0, and this means 

that the curvature scalar R = Rµ
µ also vanishes.  As a consequence, how best to 

characterize the curvature near black holes is unclear.  The Kretschmann scalar  

K = RαβγδRαβγδ has been used by several authors [6, 7], but the interpretation of the scalar 

is somewhat ambiguous.  As pointed out in [7], the Kretschmann scalar can be positive 

for spaces having a negative curvature.  A different method of characterizing the 

curvature that was used in [1] will be explored below. 

 The Kerr-Newman solution in generalized Eddington coordinates [8], which are 

convenient for this approach, is given by 

 

 

                  (4) 

 

where the symbols have their conventional meanings. 

 In [1] it was pointed out that for the Reissner-Nordström solution the metric takes 

the Minkowski form when r = Q2/2m.  Interestingly enough, the same thing occurs in the 

Kerr-Newman metric except that now r has a different meaning with surfaces of constant 

r corresponding to confocal ellipsoids satisfying 

 

                    (5)
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 It will be seen, however, that unlike the Reissner-Nordström solution, where it 

was possible to show that for r < Q2/2m the curvature was negative, the case of the Kerr-

Newman solution is more complex. 

 In order to interpret what follows, it will be necessary to compute the surfaces 

where grr and gφφ vanish; the infinite red shift surfaces (where g00 = 0) for various values 

of the parameters, and their relation to the horizons, have been given elsewhere [9] and 

are not relevant to the following discussion.  To determine the curvature near the ring 

singularity, it is useful to examine the case where a2 + Q2 > m2, which allows the region 

near the singularity to be visible from infinity.  Setting a = m = Q = 1 as a convenient 

choice of parameters, the condition gφφ = 0 results in the fourth order equation 

 

                                                                    (6)
 

 

Two of the solutions to this equation are imaginary, one is negative, and the last is 

positive and real.  The latter is very long and writing it out would add no insight into its 

nature.  The condition grr = 0 using the same value for the parameters results in the 

quadratic equation 

 

                                                                                                     (7) 

 

The positive root is .  While the surface grr = 0 will play no role in 

what follows, it and its relation to the surface gφφ = 0 are of interest in their own right.  

The plots of the real, positive solution to Eq. (6) and of Eq. (7) are shown in Cartesian 

coordinates in Fig. 1, where henceforth R = (x2 +y2)1/2.  gφφ and grr are negative (time-like) 

within their respective toroids gφφ = 0 and grr = 0. 

 

 



 5 

 
Figure 1.  The surfaces where grr = 0 and gφφ = 0 in Cartesian coordinates.  The 
values of the parameters are a = m = Q = 1.  The surfaces are toroids, the z-axis 
being the axis of symmetry.  The ring singularity is shown as a heavy dot located 
at R = 1 and z = 0. 

 

 The method of exploring the curvature near the ring singularity is the same as that 

used in [1] where the ratio of the circumference of a circle to its radius was computed.  

One has, for the Eddington coordinates used in Eq. (4), the relations 

 

                                                                     (8)
 

 

Notice that substituting these equations into Eq. (5) yields an identity. 

 First consider the equatorial plane where θ = π/2.  The first of Eqs (8) allow the 

ratio of the circumference of a circle in the plane to its radius to be written as 

 

                                              (9)

 

 

Note that when C/R is set equal to 2π and the resulting equation solved for r one obtains  

r = Q2/2m where the metric of Eq. (4) takes the Minkowski form.  This ratio is plotted in 

Fig. (2) for the same values of the parameters used in Fig. (1).  The ratio vanishes for 
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r~0.404698, which corresponds to R~1.0830 in Cartesian coordinates.  The toroidal 

surface gφφ = 0 of Fig. 1 intersects the equatorial plane in two circles.  The latter values of 

r or R correspond to the circle of greatest radius. 

 

 
Figure 2. The ratio of the circumference to the radius R in the equatorial plane of 
the Kerr-Newman solution in Eddington coordinates.  The ring singularity is 
shown as the heavy dot at r = 0.  The portion of the curve above the line C/R = 
2π corresponds to a negative curvature and that below to positive curvature.  C/R 
= 0 at r ~ 0.404698 where gφφ = 0, and crosses the line C/R = 2π at r = Q2/2m, 
which for the value of the parameters used here, a = m = Q = 1, is 0.5. 

 

 The ratio of the circumference to its radius for a circle not in the equatorial plane 

is considerably more complicated.  Using both of Eqs. (8), the ratio can be written as a 

function of the variables θ and z as 

 

   

                                     (10) 
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For a given plane z = Const., each value of θ determines a circle in the plane centered on 

the z-axis, corresponding to the intersection of that plane with the hyperboloid of one 

sheet associated with each θ.  These hyperbolae are confocal to the ellipsoids 

corresponding to r = Const. given by Eq. (5).  There is a bit of a subtlety here in that the 

surface θ = Const. is only a half-hyperboloid lying in the half space z > 0 (z < 0) when  

θ < π/2 (θ > π/2).   

Note again that if z = r cosθ is substituted back into the expression for C/R given 

by Eq. (10), and the result set equal to 2π, the solution to the equation for r again yields  

r = Q2/2m independent of θ.  The plots for various values of z are shown in Figs. 3(a), 

3(b), and 3(c).  

 

 
                     (a)                                              (b)                                            (c) 
Figure 3.  The ratio of the circumference to the radius for three values of z.  Note that each value 
of θ corresponds to a different circle centered on the z-axis in the plane z = Const. (a) z = 2; 
 (b) z = 0.1. The ratio vanishes at θ  ≈ 0.905169 and θ  ≈ 1.29788 where the plane z = 0.1 
intersects the toroid gφφ = 0; (c) z ≈ 0.13569. Here the plane is almost tangent to the toroidal 
surface of gφφ = 0.  In these figures, θ = 0 corresponds to the C/R-axis and θ = π/2 to infinity.  The 
curves in (b) and (c) cross the line C/R = 2π at r = Q2/2m = 0.5 for the chosen parameters.   
 

 Interpretation of Fig. 3, compared to that of the Reissner-Nordström solution, is 

complicated by the effects of rotation.  The difference in behavior between the Kerr and 

Kerr-Newman solution is due to there being no toroidal surface within which gφφ is time-

like for the uncharged Kerr metric.  An excellent discussion of rotationally induced 

effects in the Kerr metric has been given by de Felice and Clarke [10]. 

 The effects of rotation in the presence of a magnetic field have been studied by 

Kulkarni and Dadhich [11], who also discuss the Gaussian curvature and its role in the 

embedding problem. 
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 Thus, while the computation of the ratio of the circumference of a circle to its 

radius in a plane z = constant gives some interesting results, perhaps the most important 

conclusion is that for r = Q2/2m the ratio is equal to 2π.  It is at this radius that the Kerr-

Newman metric takes the Minkowski form. 

 
Effective mass in the Kerr-Newman solution 

 From Eq. (1) it can be seen that in the case of the Reissner-Nordström solution the 

effective mass within a sphere of radius r = Q2/2m is –m.  While the literature contains a 

number of definitions for the Kerr-Newman effective mass [2, 4], the one that will be 

used here is that given by de Felice and Bradley [6].  The latter not only has the virtue of 

being equal to the Schwarzschild or ADM mass at infinity, it also yields the Reissner-

Nordström value of –m at the radius r = Q2/2m.  de Felice and Bradley give the equation 
 

        (11)
 

 
This expression for the Kerr-Newman effective mass is dependent on the variable θ, but 

for r = Q2/2m it yields –m independent of θ.  This means that the region within the 

surface r = Q2/2m effectively has negative curvature.  Since the value of the effective 

mass at infinity is m, the effective mass of the field energy contained in region Q2/2m ≤ r 

≤ ∞ must be 2m.  Again the same as the Reissner-Nordström solution despite, as 

discussed earlier, the difference in meaning for r.   

 As is readily apparent, if Q2 = 0 the effective mass given by Eq. (11) vanishes on 

the surface r = a cos θ.  Indeed, the origin of Eq. (11) is related to the fact that the 

Kretschmann scalar vanishes on this surface for the uncharged Kerr metric.  The 

Kretschmann scalar  for the Kerr-Newman metric is given by [7] 

 

 

       (12) 
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For Q2 = 0 and r = a cos θ one may confirm that K = 0.  However, this is not the case for 

Q2 ≠ 0, nor is it true for the surface r = Q2/2m.  It is therefore not clear what role the 

Kretschmann scalar plays for the Kerr-Newman solution. 

 Cohen and de Felice, in an earlier paper [2], derive an expression for the effective 

mass of the Kerr-Newman solution in Boyer-Lindquist coordinates.  The metric in these 

coordinates is 

 

 

                (13) 

 

where, 

 

 
                (14) 

 

Cohen and de Felice then evaluate the Komar integral [5] 

 

 

 

                (15) 

where ξ, is the Killing 1-form, *dξ is the Hodge dual of the 2-form dξ, and V is the 

volume interior to the space-like boundary ∂V.  They then use an orthonormal frame of 1-

forms to evaluate *dξ.  The surface chosen is r = r0 = constant.  Because of the cross 

terms in the metric, the “time” difference for simultaneous events [12] on this surface 

differ by dt = −g00
−1g0φ dφ.  So as to have a surface of simultaneous events one must 
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subtract the contribution to the integral due to the time difference between initial and 

final events.  The Komar integral then reduces to what will be called the effective mass 

interior to the surface r = r0:   

 

 
                (16) 

 

where (including a sign correction from [6]), 

 

 
                (17) 

The integral is readily evaluated and yields 

 

 

                (18) 

 

 As pointed out by Cohen and de Felice, this expression does not explicitly include 

the negative contribution to the effective mass due to rotation.  This is readily apparent by 

setting Q2 = 0, which leaves only the mass term.  Kulkarni, et al. and Chellathurai and 

Dadhich [3, 4] give an expression for the effective mass that does include rotation, 

however it is exact only in the limits of the outer horizon and infinity.  Since the interest 

here is primarily on the effects of charge, the expression given by Eq. (18) suffices.   

That Eq. (18) yields the correct value for the Reissner-Nordström solution when  

a = 0 can be seen by expanding the right hand side in a series in a.  One obtains 

 

 

                (19) 
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For a = 0, the result is the same as in Eq. (1). 

Cohen and de Felice also derive the effective mass due to the electric field in a 

volume interior to r = r0.  The approach they used also allows one to find the effective 

mass of the electric field in the volume r0 ≤ r ≤ ∞ exterior to r0.  To do this one uses the 

contour shown in Fig. 4. 

 

Figure 4.  The integration of Eq. (20) is over the closed toroidal surface of the volume V. 
 

 The Komar integral for the contour of Fig. 4 is given by  

 

 
                (20) 
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where, 

 

 

                (21) 

 

 In doing the integration, one must also take into account the path of integration 

and the fact that for the volume V the normal to the surface r = r0 points in the negative  

r-direction (opposite to the direction when computing the effective mass within this 

surface).  The last two integrals in Eq. (20) vanish, and the first two combine to both 

eliminate the mass term associated with the ring singularity (which is exterior to the 

volume of integration) and yield 

 

 

                (22) 

 

Thus, as in the case for the Reissner-Nordström solution, one has 

 

 

                (23) 

 

where m is the Schwarzschild or ADM mass. 

 

Summary 

 By excluding the effects of rotation in the definition of effective mass for the 

Kerr-Newman metric, it has been shown that the “negative mass” due to charge has 

properties very similar to that of the Reissner-Nordström metric.  Both take the 

Minkowski form at r = Q2/2m, even though the meaning of r is different for the two 

metrics; the effective mass interior to this surface is –m in both cases; and both have an 



 13 

effective mass of m at infinity.  In addition, the effective mass for both metrics satisfies, 

for any surface defined by r = constant (again for either definition of r), the relation 

 

 

                (24) 

 

Thus the positive effective mass of the electric field exterior to the surface exactly 

compensates for the “negative mass” associated with the charge located within the 

surface. 
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