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Abstract.  Charge, like mass in Newtonian mechanics, is an irreducible 

element of electromagnetic theory that must be introduced ab initio.  Its 

origin is not properly a part of the theory.  Fields are then defined in terms 

of forces on either masses—in the case of Newtonian mechanics, or 

charges in the case of electromagnetism.  General Relativity changed our 

way of thinking about the gravitational field by replacing the concept of a 

force field with the curvature of space-time.  Mass, however, remained an 

irreducible element.  It is shown here that the Reissner-Nordström solution 

to the Einstein field equations tells us that charge, like mass, has a unique 

space-time signature. 
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Introduction. 

 The Reissner-Nordström solution is the unique, asymptotically flat, and static 

solution to the spherically symmetric Einstein-Maxwell field equations. Its accepted 

interpretation is that of a charged mass characterized by two parameters, the mass M and 

the charge q.  While this solution [1] has been known since 1916, there still remains a 

good deal to be learned from it about the nature of charge and its effect on space-time.   

 It will be shown here that if the source of the field is the singularity of the vacuum 

Reissner-Nordström solution, only the Schwarzshild mass is seen at infinity, with the 

charge and its electric field making no contribution.  In particular, if the charge alone is 

the source of the field, the effective mass seen at infinity vanishes.  This is not the case 

when the source of the field is a “realistic” source characterized by a mass and proper 

charge density [5].  It will also be seen that the presence of charge results in a negative 

curvature of space-time. 

The Reissner-Nordström solution is given by  

                    (1)
 

where m = GM/c2 and Q = (G1/2/c2) q.  The Reissner-Nordström metric reduces to that of 

Schwarzschild for the case where Q = 0.  Notice that this metric takes the Minkowski 

form when r = Q2/2m.   

 If Q2 ≤ m2, this solution has two apparently singular surfaces located at 

.  These are coordinate singularities that may be removed by 

choosing suitable coordinates and extending the manifold.  If Q2 = m2, these surfaces 

coalesce into a single surface located at r = m, and if Q2 > m2 the metric is non-singular 



Charge, geometry, and effective mass 

 
3 

everywhere except for the origin.  These singular surfaces play no role in what follows.  

An extensive discussion of the vacuum Reissner-Nordström and Schwarzschild solutions, 

along with their Penrose diagrams is given in Hawking and Ellis [2]. 

 Most applications of the Reissner-Nordström solution would be outside a body 

responsible for the charge and mass.  Here it is the vacuum solution to the field equations, 

considered to be valid for all values of r, that is of interest. 

 Like the vacuum Schwarzschild solution, the Reissner-Nordström vacuum 

solution has an irremovable singularity (in the sense that it is not coordinate dependent) at 

the origin representing the source of the field.  In what follows, only the Reissner-

Nordström solution having this singularity as a source of the field will be considered. 

The interesting thing about the singularity is that it is time-like so that clocks near 

the singularity run faster than those at infinity.  It is also known that the singularity of the 

Reissner-Nordström solution is repulsive in that time-like geodesics will not reach the 

singularity.   

 

Curvature in the Reissner-Nordström solution. 

 If one computes the Gaussian curvature associated with the Schwarzschild 

solution it is readily seen that the curvature vanishes.  Higher order scalars, such as the 

Kretschmann scalar given by K = RαβγδRαβγδ, do not vanish, but their interpretation is 

problematic [3].  Of course the curvature of space-time around a Schwarzschild black 

hole does not vanish since the curvature tensor does not vanish.  More important for the 

present discussion is that a simple way to determine the sign of the curvature is well 

known. 
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 Consider first the Schwarzschild solution.  Draw a circle on the equatorial plane 

where θ = π/2 centered on the origin.  The circumference of this circle is 2π r.  The 

proper radius from the origin to the circle is given by 

                                                                         (2) 

Consequently, the ratio of the circumference of the circle to the proper radius is less than 

or equal to 2π.  This tells us that the space is positively curved.  Now consider a negative 

mass.  The inequality sign in Eq. (2) reverses so that the ratio of the circumference of a 

circle to its proper radius is greater than 2π—with the conclusion that the space 

surrounding a negative mass has a negative curvature.   

The case of the Reissner-Nordström solution is more interesting.  Setting 

 

                    

and using the above method of determining the spatial curvature gives the results shown 

in Table 1.  For r < Q2/2m, one has a negatively curved space-time, which is embedded in 

a positively curved space-time with a 2+1 dimensional boundary having the Minkowski 

form between them.  In the region between the time-like singularity at the origin and the 

2+1 dimensional hypersurface, the space-time is negatively curved independent of the 
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sign of the charge.  This implies that charge manifests itself as a negative curvature—just 

as mass causes a positive curvature. 

 

 r > Q2/2m r = Q2/2m r < Q2/2m 

    g00 ≥−1 −1 <−1 

    g11 >1 1 <1 

Spatial Curvature Positive Flat Negative 

Table 1.  The metric coefficients g00 and g11 for different ranges 

of r, and the sign of the spatial curvature in these regions. 
 

 That charge effectively acts as a negative mass can also be seen from the 

equations governing the motion of a test particle near a Reissner-Nordström singularity.  

For an uncharged particle falling inward towards the singularity the radial acceleration is 

[4], [5], [6], [7] 

                                                                                                    (3)
 

The gravitational field that affects the test particle varies with distance from the 

singularity and becomes repulsive when the effective mass 
 
becomes 

negative at r < Q2/m.  Neutral matter falling into the singularity would therefore 

ultimately accumulate on the 2+1 dimensional spherical hypersurface where meff = 0. 
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 Thus, by means of very straight-forward considerations, the Reissner-Nordström 

solution leads to the conclusion that charge—of either sign—causes a negative curvature 

of space-time.   

 

The electric field 

 This section is devoted to a general relativistic calculation of the effective mass of 

the vacuum Reissner-Nordström solution: first, of that contained within the interior of a 

spherical surface of radius R, centered on the singularity—and designated ; and 

second, the effective mass of the electric field alone outside that surface—designated 

.  The key references for what follows are Synge [8] and Gautreau and Hoffman [9].   

 Synge gives the following Stokes relation* for a 3-dimensional volume, v3, 

bounded by a closed 2-surface v2: 

                                                                             (4)
 

Here, dv2 and dv3 are the invariant elements of area and volume, G is the Einstein tensor, 

and V is defined by the line element 

                                                                                                  (5) 

which, at infinity, is assumed to take the form of the Minkowski metric.  ni is the outward 

unit normal to the surface v2.  Einstein’s equations, , with κ = 8π, allow  

Eq. (4) to be written as 

                                                
* Greek indices take the values 1, 2, 3, 4 and Latin indices 1, 2, 3. To avoid unnecessary 

confusion, the notation used here is generally consistent with that found in the relevant 

literature. 
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                                                                            (6)
 

The integral on the right hand side of this equation corresponds to the total effective mass 

enclosed by the surface v2.  This is known as Whittaker’s theorem [10].  Thus, 

                                                                                                   (7)
 

Note that the effective mass, as defined by Eqs. (6) and (7), depends only on the energy-

momentum tensor and the g00 component of the metric.  Choose a spherical surface of 

radius R with the Reissner-Nordström singularity at the origin.  From Eq. (1), V is given 

on the surface by 

                                                                                                      (8)
 

 , and ni = (V, 0, 0).  Substituting into Eq. (7) gives the result quoted 

above [just after Eq. (3)] for meff at a distance R from the singularity 

                                                                                                                (9)
 

 For asymptotically flat space-times, global quantities such as the total energy can 

be defined as surface integrals in the asymptotic region.  This is the basis for definition of 

the ADM energy (or mass) [11].  What will be shown here is that for R ≠ ∞, the sum of 

the effective mass within the surface v2 and that exterior to v2 is the Schwarzschild mass.  

This is true for the vacuum solution being considered here, not necessarily for realistic 

sources such as those considered by Cohen and Gautreau [5]. 
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 Whittaker’s theorem allows the effective mass enclosed by the surface v2, which 

is composed of the mass located at the origin and that corresponding to the electric field 

within v2, to be written as in Eq. (9). 

 One can also compute the effective mass exterior to the surface v2.  There, the 

only the energy density to be found is that associated with the electric field.  By summing 

the effective mass found in the volumes both interior and exterior to v2, one obtains the 

effective mass enclosed by the surface at infinity; that is, the ADM mass.  Given that 

global quantities defined by surface integrals in the asymptotic region cannot generally be 

written as volume integrals over the interior region, this is a somewhat surprising result. 

 How to use the relation of Eq. (6) to compute the electric field energy in the 

volume exterior to the spherical surface of radius R centered on the singularity can be 

understood by referring to Figure 1.  The volume of interest is v'3 exterior to the surface 

v2.  It has two boundary components, the “surface at infinity” and v2 itself.   



Charge, geometry, and effective mass 

 
9 

 
Figure 1.  The Reissner-Nordström singularity is located at the center of the 
spherical surface v2 of radius R enclosing the volume v3.  The outward pointing 
unit normal to v2 is ni.  The surface enclosing the volume v'3 is composed of the 
point at infinity and v2.  The outwardly pointing unit normal to v2, when acting as 
a boundary component of v'3, is n' i.  

 

Since the surface integral at infinity vanishes, Eq. (6) for the volume v'3 may be written as 

                                                                       (10)
 

 The V in Eq. (6) has been changed to V' in Eq. (10).  The reason for this is that the 

energy-momentum tensor in the volume v'3 must be restricted to the contribution from 

only the electric field since no masses exist in v'3.  The way to do this is to recognize that 

the Reissner-Nordström solution remains a solution to the Einstein field equations even 

when the mass m is set equal to zero.  The resulting metric is that for a massless point 

charge, which—as discussed above—has a negative curvature and is repulsive.  The 
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energy-momentum tensor for the electric field nonetheless has a positive energy density.  

The V' that should be used in Eq. (10) is therefore that from the metric for a massless 

point charge; i.e., 

                                                                                                            (11)
 

Note that r takes the fixed value R when computing the surface integral. 

Because ni = −n' i, the effective mass contained in the volume v'3 exterior to v2 is  

           
       (12)

 

 can be evaluated by simply using the second integral in Eq. (12), which was already 

evaluated for V above.  Taking account of the orientation of the surface and the 

substitution of V', the result is 

                                                                                                                    (13)
 

Combined with Eq. (9), this results in 

                                                                                                            (14) 

 What this tells us is that the “negative mass” associated with the charge Q [see 

Eq. (9)] is exactly compensated by the effective mass contained in the electric field 

present in the volume exterior to the surface r = R.  If the radius r = R → ∞, the effective 

mass contained within the surface at infinity is m, the Schwarzschild or equivalently, the 

ADM mass. 

 One can also obtain the result given in Eq. (14) by directly evaluating the last 

integral on the right hand side of Eq. (12).  This will be done here for the sake of 

completeness as well as a confirmation of Eq. (13) above.  To begin with, an identity 
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relating the energy-momentum tensor F αβ of the electric field to the scalar potential is 

needed. 

 If the energy-momentum tensor 

                                                                                         (15)
 

where 

                                                                                                             
 

is restricted to the case where only electric fields are present, so that 

                                                                                                   (16)
 

then it is readily shown that 

                                                 (17)
 

Equations (17) allow the energy-momentum tensor to be written as 

                                                                                    (18)
 

where Δ1 is a differential parameter of the first order defined [12] by 

                                                                                                               (19) 

The needed identity may now be obtained from Equation (18) as 

                                                                                                      (20)
 

which, for spherical coordinates, may be written as 

                                                                                              (21)
 

 The total effective mass inside the 3-volume dv’3 is then 



Charge, geometry, and effective mass 

 
12 

                                          (22)

 

Substitution of V' from Eq. (11), along with , φ = Q/r, and 

, yields 

                                                                                          (23)

 

As expected, this is the same result as that given in Eq. 13. 

 

Summary 

 The above results may then be summarized as in Eq. (14) 

                                                                                                                

independent of the radius R.  What this says is that the amount of “negative mass” due to 

the term – Q2/R in Eq. (9) is exactly compensated by the amount of “positive mass” 

contained in the region r > R.  For R infinite,  is the Schwarzschild mass; and if  

R < ∞,  is less than the Schwarzschild mass. 

 In their 1979 paper, Cohen and Gautreau [5] noted that: “As R decreases, MT 

[here equal to ] also decreases because the electric field energy inside a sphere of 

radius R decreases.”  And, one might add, as R decreases, the field energy exterior to R 

increases.  This is equivalent to 
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                                                                   (24)

 

so that 

                                                                                                       (25)
 

 While charge of either sign causes a negative curvature of space-time, the 

Einstein-Maxwell system of equations does not allow different geometric representations 

for positive and negative charges.  This is a direct result of the fact that the sources of the 

Einstein-Maxwell system are embodied in the energy-momentum tensor, which depends 

only on the (non-gravitational) energy density—which is why charge enters as Q2 above.  

Thus, a full geometrization of charge does not appear to be possible within the 

framework of the Einstein-Maxwell equations. 

 As mentioned earlier, no “realistic” sources for the Reissner-Nordström metric are 

considered in this paper.  Realistic sources raise many interesting questions, among them 

are: Can a lone, charged black hole actually exist? If so, how can global charge neutrality 

be maintained? 
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