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ABSTRACT 

 

A brief introduction to the glasma hypothesis is given here.  Almost everything covered is far 

more complex than the discussion given.  Nonetheless, this relatively elementary introduction 

should serve as an entrée into the field.  The terminology used in the field is defined and there 

is an appendix on Light-cone and Milne Coordinates.   
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INTRODUCTION 
 

The concept of a Color Glass Condensate followed by the formation of a glasma is now used 

to provide a description for a collision of two relativistic heavy ions and the following 

evolution of the system.  An introduction to these concepts is provided here. 

 

First, a note on terminology: The Color Glass Condensate (CGC) is an extremely dense gluonic 

state.  If 𝑧̂ is the direction of motion just before the relativistic collision of two hadrons, their 

gluons can be treated as classical fields which are “static” in the transverse plane where 𝐸 ⊥

𝐵 ⊥ 𝑧̂.  After the collision, the field almost instantaneously become longitudinal; i.e., in the 𝑧̂ 

direction.  Unlike the CGC, the glasma [1], [2] is a rapidly expanding and interacting gluon 

field.  The glasma is the intermediate state between the CGC and the quark-gluon plasma.  

This state is somewhere between a glass and a plasma hence the term glasma.  The lifetime 

of the glasma is only a fraction of one fm/c, where fm means femtometer and one fm/c is 

10-23 s. 

 

A description of a collision of two relativistic heavy ions and system’s evolution has been given 

in terms of a spacetime diagram by McLerran and is shown in Figure 1.   

 

 
Figure 1.  A spacetime diagram for hadronic collisions.  McLerran has claimed that this 
demonstrates the close correspondence between cosmology and the physics of hadronic collisions 
[L. McLerran, arXiv:0812.4989] 
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The correspondence of Fig. 1 with cosmology is marginal at best since at the time of the “initial 

singularity”, space-time as we know it did not exist.  Thus, the use of Minkowski space is not 

appropriate for this period of the evolution of the universe.  The figure does, however, make 

perfect sense in the context of the physics of hadronic collisions.  Of course, McLerran did not 

intend that the beginning of the universe could literally be taken to be a CGC followed by a 

glasma.  That would be impossible given the total energy/mass involved.   

 

In what follows, Latin letters i, j, k, . . . correspond to two-component vectors transverse to 

the longitudinal axis 𝑧̂ and Latin letters from the beginning of the alphabet a, b. c, . . . for color 

components of the SU(Nc) color gauge group.   

 

The longitudinal color fields 𝐸! and 𝐵! have been given by Lappi and McLerran [3]as 

𝐸! = 𝑖𝑔)𝛼"# , 𝛼$# , 

𝐵! = 𝑖𝑔𝜖#%)𝛼"# , 𝛼$
%,, 

                  Eqs.(1) 

where α1 and α2 are the CGC fields, with all the transverse components vanishing at proper 

\me 𝜏 = √𝑡! − 𝑧! = 0+.   

 

The field strength is given by 1/g and the Yang-Mills equations (a set of partial differential 

equations for a connection on a vector or principal bundle) are solved across the forward 

lightcone with the boundary conditions at 𝜏 = 0 being 

𝛼&# |'() = 𝛼"# + 𝛼$#  

𝛼|'() =
𝑖𝑔
2 )𝛼"

# , 𝛼$# , 

𝜕'𝛼|'() = 𝜕'𝛼&# |'() = 0. 

                  Eqs.(2) 

Lappi and McLerran show a numerical solution of the longitudinal color fields given in Eqs.(1).  

in their Fig. 3.  The plot shows that 𝐵!$ and 𝐸!$ are related by a function b, that is, 𝐸!$ = 𝛽𝐵!$, 
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where 𝛽 is only a function of time.  The same is true for the transverse fields albeit with a 

different function.  The longitudinal and transverse magnetic and electric color fields are 

shown in Figure 2. 

 
Figure 2. Ez and Bz for Eqs. (1).  The figure shows that 𝐵"! and 𝐸"! are related by a function b.  While the 
function differs only slightly from unity, it is not a constant.  The same is true for the transverse fields.  
The coordinates usually used for the glasma field are the Milne coordinates where the proper time 
 𝜏 = √𝑡! − 𝑧! and 𝜂 = 𝑡𝑎𝑛ℎ#$(𝑧/𝑡).  [From Lappi and McLerran [3].] 

 

Figure 2 shows that even as the transverse field increases the condition 𝐸!$ = 𝛽𝐵!$ is 

maintained so that the field remains the same un\l eventually the glasma decays into a quark-

gluon plasma.  The figure also shows that when the proper time coordinate is essentially zero, 

only Ez and Bz are non-zero, the transverse fields vanishing.  Note that in the usual 

z,t-coordinates, 𝐸! ≡ 𝐹*! and 𝐵! ≡ 𝐹+,.  At proper time 𝜏 = 0, the Poynting vector in the 
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glasma is zero since the fields are purely longitudinal, but as 𝜏 increases the transverse 

components grow creating a flow of energy in the form of photons.   

 

As the density of gluons can increase only to the point where it reaches what is called the 

Saturation Scale Qs.  Qs acts as a natural maximum that defines the transverse coherence 

length.  This forces the color fields to be confined to transverse maximum diameter of ~1/Qs   

These are called “flux tubes” the boundaries of which are diffuse and can change.  1/Qs has 

the value of about 0.04 to 0.2 fm, where a femtometer is 10-15 m. 

 

The color electric and magnetic fields are confined to flus tubes in the longitudinal direction; 

their color and direction are random since the original fields in the Color Glass Condensate 

were random.  The transverse size is the inverse of the saturation momentum Qs.  These are 

often depicted as shown in Fig.3.   

 
𝐸" = 𝑖𝑔2𝛼$% , 𝛼!% 5 

𝐵" = 𝑖𝑔𝜖%&2𝛼$% , 𝛼!
&5 

Figure 3.  Color electric and magnetic flux tubes in the longitudinal direction.  Note that their color and 
direction are random.  Initially, only Ez and Bz are non-zero.  1/Qs has the value of about 0.04 to 0.2 fm, 
where a femtometer is 10-15 m.  

 

Width = 1/Qs  
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Unlike the flux tubes of the Lund string model, these flux tubes can have not only electric flux 

but magnetic flux or a mixture of both as well [4].  The length of the glasma is 

 < 3 X 10-15 m, and 1/Qs is ~0.04 to 0.2 X 10-15 m.  

 

For a full discussion of electric color fields and currents in uniform fields and in the Glasma 

see Tanji [5].  For a spatially uniform color field he finds that the field strength 𝐹-./  is given by 

 

𝐹-./ = 𝐹-. 	𝑛/ , 

                   Eq.(4) 

where na is a constant vector in color space and a designates the color.  This field strength is 

given by the gauge field 

𝐴-/(𝑥) = 𝐴-(𝑥)𝑛/ , 

where 𝐴-(𝑥) gives 𝐹-. as 

𝐹-. = 𝜕-𝐴. − 𝜕.𝐴- . 

                  Eqs.(5) 

This means that the usual Maxwell equations can be often used for a spatially uniform color 

field when Eq.(4) holds.  Note that 𝐴-/(𝑥) is a solution of the Yang-Mills equation. 

 

Since the relationship between Ez and Bz holds for the general fields given by Eqs.(1) it also 

holds for the fields given by Eq.(4).   

 

The longitudinal electric field generates a longitudinal EM current.   Tanji finds that  

 

𝐽01& ≃
4	𝑒
(2𝜋)&D𝑒234

5'

|7(8|0)
9

:

	× 	(𝑤:𝑔|𝑤:𝑔|𝐸)$)	𝑡). 

                    Eq.(6) 
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Here +g/2 is the effective coupling between a color quark with a charge e and the electric 

field.  The uniform color electric field is given by 𝐹)&/ = 𝐸)𝑛/ for 𝑡 ≥ 0.  To obtain Eq.(6), Tanji 

assumed a strong electric field with 𝑔𝐸 ≫ 𝑚$.  The effective coupling depends on the 

direction of the color vector 𝑛/ in a way that is gauge invariant.  It is given by wcg.  For the 

exact meaning of wc, see the discussion of his Eq.(8).  The absolute value of the effective 

coupling is of the order of unity.   

 

Here is his plot of the 𝐽01&  current: 

 

 
Figure 4.  Numerical calculation of the time dependence of the EM current induced by the uniform 
electric field for various values of the color angle 𝜃 for SU(3)c. The thin lines show the approximation 
given by Eq.(6).   [Figure 2 from Tanji [6]].    

 

This limited introduction to the glasma hypothesis for describing the earliest stages after the 

collision of two relativistic heavy ions addresses the postulate that the very earliest stage is a 

CGC and that it is almost instantaneously followed by the glasma which decays and 
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thermalizes to form a Quark Gluon Plasma.  This plasma then decays to form hadrons.  The 

Glasma Hypothesis was introduced as a way to explore the high-energy limit of QCD.   

 

 

SUMMARY 

A brief introduction to the glasma hypothesis has been given here.  Almost everything covered 

is far more complex than indicated.  Nonetheless, this introduction should serve as an entrée 

into the field.  One example of the actual complexity is that if there is an electromagnetic 

current as in Eq.(6), there will be emission of radiation.  It is possible to numerically solve the 

lattice version of Maxwell’s equations due to the SU(3)c fields of this current [5].  Other issues 

not covered is that there could also be multiple color fields; and while the Poynting vector 

associated with the glasma was briefly touched upon, there could, in addition, be a non-zero 

transverse Poynting vector.  See the discussion of this in terms of the McLerran-Venugopalan 

model by Chen and Fries [6]. 

 

 

 

APPENDIX 

Light-cone and Milne Coordinates 

 

Light-cone and Milne coordinates are used in the context of relativistic collisions of heavy ions 

to describe the longitudinal expansion of the glasma, the form of matter assumed to exist in 

the early stage after a collision.  The collision axis is chosen to be z. 

 

Given the Minkowski space coordinates (t, x, y, z), the light-cone coordinates are 

𝑥; =
1
√2

(𝑡 + 𝑧)			𝑎𝑛𝑑			𝑥2 =
1
√2

(𝑡 − 𝑧) 

              Eqs.(A1) 
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and 𝑥< = (𝑥, 𝑦) are the transverse coordinates (transverse with respect to z).  These are 

shown in Fig. A1.   

 

Milne coordinates are (𝜏, 𝜂, 𝑥<).  They are curvilinear coordinates used to describe the 

interior of the forward light-cone.  The proper time 𝜏 = √𝑡$ − 𝑧$ are surfaces of hyperboloids 

in Minkowski space.  𝜂 is given by 

𝜂 =
1
2 	𝑙𝑛 R

𝑡 + 𝑧
𝑡 − 𝑧S. 

                Eq.(A2) 

In Milne coordinates, the metric is given by 𝑑𝑠$ = 𝑑𝜏$ − 𝜏$𝑑𝜂$ − 𝑑𝑥$ − 𝑑𝑦$.  Some 

additional terminology: 𝜂 is known as the “rapidity”.   

 

In a collision, 𝜏 represents the elapsed time since the moment of the collision for a particle 

moving at a specific rapidity.  In glasma simulations, 𝜏 = 0 is when the collision occurs and 𝜂 

is the longitudinal position of the glasma relative to the collision point.   

 
Figure 1.  Milne/light-cone coordinates.  The surfaces of proper time 𝜏 are hyperboloids in 
Minkowski space.  By setting 𝜂 equal to a constant one can show the linearity of 𝜂.  Each point 
in Minkowski space corresponds to a specific value of (𝜏, 𝜂, 𝑥*).  The transverse coordinates 
𝑥* = (𝑥, 𝑦) are perpendicular to the figure.   
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