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ABSTRACT

A brief introduction to the glasma hypothesis is given here. Almost everything covered is far
more complex than the discussion given. Nonetheless, this relatively elementary introduction
should serve as an entrée into the field. The terminology used in the field is defined and there

is an appendix on Light-cone and Milne Coordinates.



INTRODUCTION

The concept of a Color Glass Condensate followed by the formation of a glasma is now used
to provide a description for a collision of two relativistic heavy ions and the following

evolution of the system. An introduction to these concepts is provided here.

First, a note on terminology: The Color Glass Condensate (CGC) is an extremely dense gluonic
state. If Z is the direction of motion just before the relativistic collision of two hadrons, their
gluons can be treated as classical fields which are “static” in the transverse plane where E L
B L Z. After the collision, the field almost instantaneously become longitudinal; i.e., in the Z
direction. Unlike the CGC, the glasma [1], [2] is a rapidly expanding and interacting gluon
field. The glasma is the intermediate state between the CGC and the quark-gluon plasma.
This state is somewhere between a glass and a plasma hence the term glasma. The lifetime
of the glasma is only a fraction of one fm/c, where fm means femtometer and one fm/c is

107%3s.

A description of a collision of two relativistic heavy ions and system’s evolution has been given

in terms of a spacetime diagram by McLerran and is shown in Figure 1.
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Figure 1. A spacetime diagram for hadronic collisions. McLerran has claimed that this
demonstrates the close correspondence between cosmology and the physics of hadronic collisions
[L. McLerran, arXiv:0812.4989]



The correspondence of Fig. 1 with cosmology is marginal at best since at the time of the “initial
singularity”, space-time as we know it did not exist. Thus, the use of Minkowski space is not
appropriate for this period of the evolution of the universe. The figure does, however, make
perfect sense in the context of the physics of hadronic collisions. Of course, McLerran did not
intend that the beginning of the universe could literally be taken to be a CGC followed by a

glasma. That would be impossible given the total energy/mass involved.

In what follows, Latin letters i, j, k, . . . correspond to two-component vectors transverse to
the longitudinal axis Z and Latin letters from the beginning of the alphabet a, b. c, . . . for color

components of the SU(N,) color gauge group.

The longitudinal color fields E# and B# have been given by Lappi and McLerran [3]as
E? = ig|al, al]
B% = igel[al,al],
Egs.(1)
where a1 and ay are the CGC fields, with all the transverse components vanishing at proper

time=vEZ =22 = 0 +.

The field strength is given by 1/g and the Yang-Mills equations (a set of partial differential
equations for a connection on a vector or principal bundle) are solved across the forward
lightcone with the boundary conditions at T = 0 being
t5lr=o = @ +
Qlemy = 5 [ ]
0rt| ;=g = 0z} |;=o = O.
Egs.(2)
Lappi and McLerran show a numerical solution of the longitudinal color fields given in Egs.(1).

in their Fig. 3. The plot shows that BZ and EZ are related by a function 3 thatis, EZ = BB2,
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where f is only a function of time. The same is true for the transverse fields albeit with a

different function. The longitudinal and transverse magnetic and electric color fields are

shown in Figure 2.
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Figure 2. F? and B for Egs. (1). The figure shows that B2 and EZ are related by a function 8. While the
function differs only slightly from unity, it is not a constant. The same is true for the transverse fields.
The coordinates usually used for the glasma field are the Milne coordinates where the proper time

T =+vt? —z%andn = tanh™1(z/t). [From Lappi and McLerran [3].]

Figure 2 shows that even as the transverse field increases the condition EZ = BB? is
maintained so that the field remains the same until eventually the glasma decays into a quark-
gluon plasma. The figure also shows that when the proper time coordinate is essentially zero,
only E; and B, are non-zero, the transverse fields vanishing. Note that in the usual

z,t-coordinates, EZ = F'2 and B? = F*Y. At proper time t = 0, the Poynting vector in the



glasma is zero since the fields are purely longitudinal, but as 7 increases the transverse

components grow creating a flow of energy in the form of photons.

As the density of gluons can increase only to the point where it reaches what is called the
Saturation Scale Qs. Qs acts as a natural maximum that defines the transverse coherence
length. This forces the color fields to be confined to transverse maximum diameter of ~1/Qs
These are called “flux tubes” the boundaries of which are diffuse and can change. 1/QOs has

the value of about 0.04 to 0.2 fm, where a femtometer is 107> m.

The color electric and magnetic fields are confined to flus tubes in the longitudinal direction;
their color and direction are random since the original fields in the Color Glass Condensate
were random. The transverse size is the inverse of the saturation momentum Qs. These are

often depicted as shown in Fig.3.

Width = 1/0s

T a—
T —
< m—

E? = ig[al, ai]
B* = igeV[al, al]

Figure 3. Color electric and magnetic flux tubes in the longitudinal direction. Note that their color and
direction are random. Initially, only £7 and B* are non-zero. 1/Qs has the value of about 0.04 to 0.2 fm,
where a femtometer is 10715 m.



Unlike the flux tubes of the Lund string model, these flux tubes can have not only electric flux
but magnetic flux or a mixture of both as well [4]. The length of the glasma is

<3X10 % m,and 1/Qsis ~0.04t0 0.2 X 10715 m.

For a full discussion of electric color fields and currents in uniform fields and in the Glasma

see Tanji [5]. For a spatially uniform color field he finds that the field strength Fj;, is given by

Eq.(4)
where n? is a constant vector in color space and a designates the color. This field strength is
given by the gauge field

Af(x) = A, (x)n,
where A, (x) gives Fy,, as

E, =0,A, —d,A

"
Egs.(5)
This means that the usual Maxwell equations can be often used for a spatially uniform color

field when Eq.(4) holds. Note that Aﬁ(x) is a solution of the Yang-Mills equation.

Since the relationship between E? and B? holds for the general fields given by Egs.(1) it also

holds for the fields given by Eq.(4).

The longitudinal electric field generates a longitudinal EM current. Tanji finds that

2

3 e _("#) 2
Jem = (ZT)C'"Z e \ Weglko) X (weglw.glEy) t).

C

Eqg.(6)



Here +g/2 is the effective coupling between a color quark with a charge e and the electric
field. The uniform color electric field is given by Fgs = Eqn® for t > 0. To obtain Eq.(6), Tanji
assumed a strong electric field with gE > m?. The effective coupling depends on the
direction of the color vector n in a way that is gauge invariant. It is given by wcg. For the
exact meaning of w, see the discussion of his Eq.(8). The absolute value of the effective

coupling is of the order of unity.

Here is his plot of the J3,, current:
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Figure 4. Numerical calculation of the time dependence of the EM current induced by the uniform
electric field for various values of the color angle 8 for SU(3).. The thin lines show the approximation
given by Eq.(6). [Figure 2 from Taniji [6]].

This limited introduction to the glasma hypothesis for describing the earliest stages after the
collision of two relativistic heavy ions addresses the postulate that the very earliest stage is a

CGC and that it is almost instantaneously followed by the glasma which decays and
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thermalizes to form a Quark Gluon Plasma. This plasma then decays to form hadrons. The

Glasma Hypothesis was introduced as a way to explore the high-energy limit of QCD.

SUMMARY
A brief introduction to the glasma hypothesis has been given here. Almost everything covered
is far more complex than indicated. Nonetheless, this introduction should serve as an entrée
into the field. One example of the actual complexity is that if there is an electromagnetic
current as in Eq.(6), there will be emission of radiation. It is possible to numerically solve the
lattice version of Maxwell’s equations due to the SU(3). fields of this current [5]. Other issues
not covered is that there could also be multiple color fields; and while the Poynting vector
associated with the glasma was briefly touched upon, there could, in addition, be a non-zero
transverse Poynting vector. See the discussion of this in terms of the McLerran-Venugopalan

model by Chen and Fries [6].

APPENDIX

Light-cone and Milne Coordinates

Light-cone and Milne coordinates are used in the context of relativistic collisions of heavy ions
to describe the longitudinal expansion of the glasma, the form of matter assumed to exist in

the early stage after a collision. The collision axis is chosen to be z.

Given the Minkowski space coordinates (t, x, y, z), the light-cone coordinates are

1 1
xtT=—(t+2z) and x~ =—=(t —2)

V2 V2
Eqs.(Al)



and x, = (x,y) are the transverse coordinates (transverse with respect to z). These are

shown in Fig. Al.

Milne coordinates are (7,7,x,). They are curvilinear coordinates used to describe the

interior of the forward light-cone. The propertime T = Vt? — z?2 are surfaces of hyperboloids

in Minkowski space. 7 is given by

_1l <t+2)
77—2 n t—2z)

Eq.(A2)
In Milne coordinates, the metric is given by ds? = dt? — t2dn? — dx? — dy?. Some

additional terminology: 7 is known as the “rapidity”.

In a collision, T represents the elapsed time since the moment of the collision for a particle
moving at a specific rapidity. In glasma simulations, T = 0 is when the collision occurs and n

is the longitudinal position of the glasma relative to the collision point.

Figure 1. Milne/light-cone coordinates. The surfaces of proper time t are hyperboloids in
Minkowski space. By setting 1 equal to a constant one can show the linearity of . Each point
in Minkowski space corresponds to a specific value of (z,1,x,). The transverse coordinates
x, = (x,y) are perpendicular to the figure.
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