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ABSTRACT 
 
The idea that particles are the basic constituents of all matter dates back to ancient times 
and formed the basis of physical thought well into modern times.  The debate about 
whether light was a wave or a stream of particles also lasted until relatively recently.  It 
was the advent of de Broglie’s work and its implications that revolutionized the concept 
of an elementary particle—but unfortunately did not banish the idea of a point particle 
despite its difficulties in both classical and quantum physics.  Some of these problems are 
discussed in this essay, which covers chiral oscillations, Penrose’s “zigzag” picture of 
particles satisfying the Dirac equation, and some ideas derived from string theory. 
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What is a particle?  We all know that the concept of a particle comes from Democritus’ 
idea of atoms.  His conception, and what today we would call Brownian motion, was 
related by Lucretius to the origin of all motion in his poem On the Nature of Things (50 
B.C.E.): 
 

Whence Nature all creates, and multiplies 
And fosters all, and whither she resolves 
Each in the end when each is overthrown. 
This ultimate stock we have devised to name 
Procreant atoms, matter, seeds of things, 
Or primal bodies, as primal to the world. 
               ! ! ! 
For thou wilt mark here many a speck, impelled 
By viewless blows, to change its little course, 
And beaten backwards to return again, 
Hither and thither in all directions round. 
Lo, all their shifting movement is of old, 
From the primeval atoms; for the same 
Primordial seeds of things first move of self, 
And then those bodies built of unions small 
And nearest, as it were, unto the powers 
Of the primeval atoms, are stirred up 
By impulse of those atoms' unseen blows, 
And these thereafter goad the next in size; 
Thus motion ascends from the primevals on, 
And stage by stage emerges to our sense, 
Until those objects also move which we 
Can mark in sunbeams, though it not appears 
What blows do urge them. 

 
With a little license, Lucretius’ “Procreant atoms, matter, seeds of things, Or primal 
bodies” formed the basis of physical thought until quite late into modern times. In the 
ancient world, however, while it was accepted there might be different kind of atoms, the 
number of types was small and sometimes related to geometrical shapes.  The advent of 
modern chemistry and spectroscopy in the 19th century began the formation of the current 
understanding of the nature of atoms. 
 
Today, it is believed that the elementary building blocks of matter are leptons and quarks, 
all of which are called fermions and obey the Dirac equation for a particle of spin of ½.  
In addition, there is electromagnetic radiation carrying a spin of 1.  Lucretius’ 
understanding of atoms has been carried over into the modern conception of “particle” in 
the sense that the basic fermions are thought to be “structureless” or “point” particles.  
This can be seen in the attempts to construct “classical” models for the electron.  
Examples are the de Broglie-Bohm interpretation of quantum mechanics1 and the work of 
David Hestenes.2  But retaining the idea of a massive charged point particle requires that 
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both mass and charge be renormalized, a process that has never rested comfortably with 
many physicists.   
 
The greatest challenge to the ancient idea of a particle came from the work of de Broglie, 
who introduced in 1924 the idea that each particle had associated with it an internal clock 
of frequency m0c2/h.  From this idea he found his famous relation showing particles of 
matter were associated with a wave.3  He did not believe a particle like the electron was a 
point particle, but rather that the energy of an electron was spread out over all space with 
a strong concentration in a very small region: “L’électron est pour nous le type du 
morceau isolé d’énergie, celui que nous croyons, peut-être à tort, le mieux connaître; or, 
d’après les conceptions reçues, l’énergie de l’électron est répandue dans tout l’espace 
avec une très forte condensation dans une région de très petites dimensions dont les 
propriétés nous sont d’ailleurs fort mal connues.”4 
 
 
1. The de Broglie Relation: Theory and Experiment 
 
De Broglie, in his 1929 Nobel lecture used the following argument: 
 

p  =  γ m0v  =  γ m0c2vc2
   =  E  v

c2
.

 
 

Identifying the energy of the massive particle with E = hν gives  
 

 p = hν
c2/v . 

 
De Broglie then assumed that c2/v corresponds to a phase velocity via vV = c2, so that  
 

p = hνV   = h
V/ν. 

 
Using V = νλ, he obtains his relation λp  =  h .   
 
Note that by assuming that c2/v corresponds to a phase velocity de Broglie is introducing 
waves having neighboring frequencies so that he can define both phase and group 
velocities.  The phase velocity so introduced is, in Max Born’s words, “a purely artificial 
conception, inasmuch as it cannot be determined experimentally.”5  
 
The existence of de Broglie’s internal clock has recently been directly subject to 
experiment.  The experimental approach used is known as “electron channeling”, a 
phenomenon observed in silicon crystals.6,7  In the experiments, a stream of electrons is 
aligned along a major axis of a thin single crystal corresponding to a row of atoms.  The 
transmission probability along this axis, compared to neighboring angles with respect to 
the axis, is reduced except for a sharp peak in the direction of the axis.  This peak or 
resonance occurs at a momentum of ~80MeV/c as can be seen in Fig.(1.1)8.  The 
electrons responsible for this resonance move along the cylindrical potential of one row 
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of atoms in precessing orbits known as Sommerfeld rosettes—they are captured in a 
bound state of the row’s potential.  The position of this resonance corresponds to the de 
Broglie frequency. 
 
While the experimental data show a resonance at a momentum of ~80MeV/c, modeling 
scattering calculations predict a resonance at ~161MeV/c. The discrepancy between the 
model results and the experimental results have not been completely resolved as of this 
writing. 
 
What is clear, however, is that the electron momentum of ~80MeV/c corresponds to a 
momentum of 2.7 × 10−22 kg m/s, and using the relativistic expression for the energy, 
E p c m c2 2 2

0
2 4= + , this corresponds to an energy of 1.2 × 10−11j.  This allows the 

calculation of the de Broglie wavelength to be λdeB = 1.6 × 10−14 m, corresponding to a 
frequency of νdeB = 1.8 × 1022.  Note that in the rest frame of the moving electron, these 
values must be compensated for the relativistic motion using γ = 156.5 giving λdeB = 2.5 
× 10−12 m and νdeB = 1.15 × 1020, the usual values for λdeB and νdeB in the rest frame.  The 
atomic spacing in the crystal lattice is d = 3.8 × 10−10 m, significantly larger than the de 
Broglie wavelength. 
 

 

 
Figure (1.1). Experimental data from electrons of momentum 80 MeV/c aligned along the 
<110> direction of a 1 µm thick silicon crystal. The figure shows counting rate vs. crystal 
tilt angle.  The full curve is the product of a phenomenological calculation. [Adapted 
from P. Catillon, et al. Found Phys 38, 659-664 (2008). 

 
Appendix 1 has a discussion of the theory behind the channeling resonance phenomena 
given by Bauer.9  
 
 
2. The Zig-Zag Picture of the Electron 
 
Penrose has introduced another conception of particles satisfying the Dirac equation and 
specifically applied it to the electron—he calls it “The zigzag picture of the electron”.10  
He continues, however, to view fermions like the electron as point particles.   
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Penrose’s idea is related to the concept of zitterbewegung, which is generally associated 
with a point particle showing that the minimum effective size of the particle is its 
Compton radius. While the conventional phenomenon of zitterbewegung has been 
covered in many textbooks, it may be useful to have a presentation on it here.  Appendix 
2 covers this as well as the equivalent for electromagnetic radiation, a phenomenon that is 
not so well known. 
 
The electroweak interactions inform us that the fundamental constituents of matter are 
leptons and quarks.  These irreducible building blocks of spin ½ fermions are fields that 
transform under the left and right handed (or spinor) representations of the Lorentz group 
designated by (½, 0) or (0, ½ ) respectively.  Thus a Dirac fermion field combines two 
equal mass 2-component fields into the group ( / , ) ( , / )1 2 0 0 1 25 , which is a reducible 
representation of the Lorentz group.11   
 
The Dirac 4-spinor can then be represented as a pair of 2-spinors (call them ϕL and ϕR) 
and the Dirac equation becomes an equation coupling these two spinors with the coupling 
constant being related to the mass of the particle.  These equations can be written 
 

( ) ,

( ) ,

p p p

p p p

p m

p m
L R

R L

0

0

$

$

v

v

z z

z z

+ =

- =

QQ QQVV VV  
               (2.1) 
where the 4-vector pµ = (E, p), pµ = (E, −p), and the signature is −2.  The quantity 

/p p p$ $v v= t  is the component of spin in the direction of the momentum and is the 
helicity.  When the mass vanishes, helicity is the same as chirality where one also speaks 
of left and right chirality, but this can be quite misleading especially when the mass is not 
zero.  In that case chirality is a purely quantum mechanical quantity related to the weak 
interactions, which do not exhibit mirror reflection symmetry.   
 
Penrose calls these 2-spinors “zig” and “zag” particles, which he assumes to be massless.  
He furthermore assumes that these particles are continuously converting themselves into 
each other at a frequency related to the zitterbewegung frequency, which he observes is 
“essentially the de Broglie frequency”.  There is a problem with this in that the de Broglie 
and zitterbewegung frequencies differ by a factor of two.  There is also the additional 
problem that chiral oscillations vanish for massless particles (see discussion just above 
Eq. (2.5) below).  Penrose is obviously aware of this when he states that for these 
massless particles, “Each is the source for the other, with the rest-mass as coupling 
constant”. 
 
The left-handed massless zig particle is defined by Penrose as that part of the Dirac field 
projected out by the operator ½(1− γ5), having helicity −1/2, and the right-handed zag 
particle as that projected by ½(1+ γ5) having helicity ½.  In the rest frame of the electron 
the zigzag oscillation is at the speed of light with the direction of spin remaining constant.  
It is important to keep in mind that for mass-zero particles helicity is the same as chirality 
and these projection operators are really the chirality operators. 
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The zigzag oscillation is a chiral oscillation.  The way to see this is by decomposing the 
Dirac wave function as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .x x x x x2
1 1 2

1 1L R
5 5/} } } c } c }= + - + +  

               (2.2) 
 
The symmetries can be found by use of the Lagrangian 
 

L ( ) ( ) .i m i i mL L R R L R R L2 2 2} } } } } } } } } }= - = + - +Y Y Y  
               (2.3) 
 
Here, }  is the Dirac adjoint defined as 0} } b } c= =@ @ , and 2 2c= n

nY .  Note that the 
kinetic energy connects L to L and R to R, while the mass terms connect L to R and R to 
L.   
 
For m 0! , ei"} }i  leaves this Lagrangian invariant so that eL

i
L"} }i  and 

eR
i

R"} }i .  The current associated with this symmetry is J }c }=n n .   
 
For m = 0, one has chiral symmetry where ei 5

"} }]c .  The axial current J5 5}c c }=n n  
is conserved, but now eL

i
L"} }]-  and eR

i
R"} }] .  Note the difference in sign in the 

exponent indicating that the phase direction of rotation in the complex plane is opposite, 
and that the difference in direction corresponds to complex conjugation.  What this is 
saying is that when one rotates a fermion, its wave function is shifted in phase in a 
direction that depends on the fermion’s chirality.  This can be seen in Figure (2.1).   
 
The last term in the Lagrangian of Eq. (2.3) must describe how the leptons interact with 
the scalar Higgs field so as to make them massive.  There is no theory governing this 
process so the form of the interaction is put in by hand. It comes from introducing a 
Yukawa like coupling of the scalars to leptons and further assumes that the Higgs field is 
a weak isotopic-spin doublet.  The resulting interaction Lagrangian for the electron is 
 

L ( )Gint e L R R L} ]} } ] }= + @
, 

               (2.4) 
 
where Ge is an unknown coupling constant and φ is a scalar Higgs field.  The form of this 
interaction Lagrangian was chosen to guarantee that it would be symmetric under 
( ) ( )SU U2 1L7  and transform appropriately under Lorentz transformations.  This form 

of interaction Hamiltonian will also maintain the zero mass of the photon and neutrino.   
 
It is worth expanding on how mass is gained via the Higgs field, and an introduction to 
spontaneous electroweak symmetry breaking is given in Appendix 3. 
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     (a) 
 
 
 
 
 
 
 
 
 
 
     (b) 

 
Figure (2.1).  (a) When one rotates a chiral fermion about its direction of motion, both the 
left and right chiral fermion change be a factor of −1, but along opposite paths in the 
complex plane; (b) the phase shift of the particle’s wave function depends on it chirality. 

 
 
Chirality and Chiral Oscillation 
 
For convenience, the terms “particle” and “antiparticle”—which usually apply to a point 
particle—will be freely used in this section since no acceptable alternatives are readily 
available.  These “particles” should nevertheless not be thought of as point particles.  An 
alternative interpretation of what they might be will be given in Section 3.  The electron 
will be used as an example and ϕL and ϕR will be designated as eL and eR . 
 
When m = 0, the Dirac spinors for the electron and the positron become linearly 
dependent so that they form a 2-dimensional vector space rather than a 4-dimensional 
space.  The meaning of eL and eR  corresponding respectively to the massive electron and 
positron, changes in a rather complicated way:12  eL  describes both a left-handed particle 
and a right handed-antiparticle and eR  describes both a right-handed particle and a left-
handed antiparticle.  The massive particle that propagates through space is a quantum 
mechanical mixture of these particles and antiparticles and the mixture gains mass via 
interaction with the Higgs boson.  This is shown in graphic form in Fig. (2.2).  In the 
usual scenario of a cooling early universe, these particles remain massless until 
electroweak symmetry breaking and interaction with the Higgs boson.  The Higgs field 
then takes a constant value everywhere. 
 
 

eL
i

L"} }]-  

eR
i

R"} }i  

1 φ 
−φ 

φ = 0 

    ψR 
 (small +φ) 

    ψL 
 (small −φ) 
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Figure (2.2).  The W or Z bosons that mediate the weak force only interact with left-chiral 
electrons, eL

- , and the right-chiral positrons, eR
+ .  They, like the other particles shown in 

the figure, except for eL and eR  are massless. The massive particles  eL and eR are a 
quantum mechanical mixture of the pairs shown and appear when the mixture interacts 
with the Higgs non-zero vacuum expectation value.  The Higgs induced mass term 
connects the massless left-chiral electron eL

-  to the right-chiral electron eR
- and the left-

chiral positron to the right-chiral positron.  The right-chiral electron is designated by eR
- , 

and the left-chiral positron by eL
+ .  The W and Z are also massless before electroweak 

symmetry breaking. 
 
 
It will be remembered that the eigenvalues of the velocity operator α in the Dirac 
equation are ±c.  For m = 0, the massless particles corresponding to eL and eR  propagate 
at the velocity of light, but after electroweak symmetry breaking the physical electron or 
positron gains mass via the Higgs mechanism described in the Appendix and travels at a 
velocity that is always less than that of light.  The combinations of these massless 
particles that make up the massive particles after interaction with the non-zero vacuum 
expectation value of the Higgs are also shown in Fig. (2.2).  The W or Z bosons that 
mediate the weak force will only interact with left-chiral electrons and right-chiral 
positrons and do not interact with right-chiral electrons or left-chiral positrons. This is a 
consequence of the non-invariance of the weak interactions under mirror reflection 
symmetry induced by the parity or P operator. 
 
Ordinarily, the weak interactions are invariant under the combination of charge 
conjugation and parity (CP), one exception being the decay of the K0 meson.13  In Fig. 
(2.2), the combination of CP would convert eL

-  to eR
+ . 

 
The left-chiral electrons, eL

- , and the right-chiral positrons, eR
+ , could not mix to form the 

physical electron because they have different charges.  On the other hand, the left-chiral 
electrons, eL

- , carry a weak charge, but the right-chiral electrons, eR
- , do not.  One might 

think the interaction between them would be forbidden by gauge invariance.  This is not 
the case because of the non-zero vacuum expectation value of the Higgs boson (which 
itself carries a weak charge).  It is this non-zero expectation value that breaks the 
conservation of weak charge and allows the mixing [see Eq. (A3.7) in Appendix 3].  
 
Chiral Oscillations and Frequency 
 
In this section, the conventions and notation of De Leo and Rotelli14 will generally be 
used.  The chiral operator γ5 does not commute with Dirac free-particle Hamiltonian 

Massive 
Electron eL 

Massive 
Positron eR 

eL
-  and eR

-   W or Z W or Z eL
+ and eR

+  } } 

  Antiparticles  

Antiparticles  
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H i m$ 2a b= - +v v  since γ0 = β and [γ0, γ5] = 2 γ0γ5.  Using the average value of the time 
derivative of an operator in the Heisenberg representation, the time derivative of the 
chiral operator is [ , ]i H mi2t

5 5 0 52 c c c c= = .  Note that 0t
52 c =  if m = 0.  

Now, 
 

( ) ( ),d x x x0 5 3 5c c } c }= r#  
             (2.5) 
 
where 0} } c= @r  is the Dirac adjoint so that 0

1
2

2
2

3
2

4
2}} } c } } } } }= = + - -@r  

is an invariant quantity.  If E k k m /0 2 2 1 2= = +vQ V  and the Dirac spinors are normalized as 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ,

v k v k u k u k m
E

u k u k v k v k

d x x x 13

d

d

} }

= =

= - =

=

@ @

@

a b a b ab

a b a b abr r

#  
             (2.6) 
 
Ψ(x) can be expanded in terms of plane waves as 
 

( )
( )

( ) ( ) ( ) ( ) .x d k
E
m a k u k e b k v k e

2
ikx ikx

3

3

1

2

}
r

= + )
a a a a

a

-

=

! $|#
 

           (2.7) 
 
Note that the time dependence is contained in ikx since k and x are 4-vectors. The 
coefficients aα(k) and bα(k) must satisfy 
 

( )
| ( ) | | ( ) | .d k

E
m a k b k

2
13

3
2 2

1

2

r
+ =a a

a=

! $|#
 

             (2.8) 
 
The evaluation of Eq. (2.5) is tedious, and results in 
 

( )
( ) ( ) ( ) ( ) . . ,d k

E
m b k a k v k u k e h c

2 ,

iEt0 5
3

3

2

2
5 2c c

r
c= -a b a b

a b

-u r u! $|#
 

             (2.9) 
 
where ( , )kk E= -u  and h.c. stands for “hermitian conjugate”.  All that is really needed to 
illustrate the chiral oscillation are the cross terms given by ( ) ( )v k u k5ca br u .  It can be 
shown that this term results in the non-zero quantity 
 

( ) ( ) ( ) ( ) .v k u k m
E v k u k5 0 5c c c= -a b a br u r u  

             (2.10) 
This non-zero term shows that the chiral oscillation does not vanish and can be seen from 
Eq. (2.9) to have the frequency /mc2 2 & , which is identical to the zitterbewegung 
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frequency.  As is the case for the zitterbewegung, for ( )x}  composed of only positive or 
negative frequencies, 00 5c c = . 
 
The chiral representation has been used above.  Switching now to the standard 
representation for the Dirac matrices (following De Leo and Rotelli), one can show that 

( ) ( )u k v k0 5c c- =b b
u  so that Eq. (2.10) [using the normalization given in Eqs. (2.6)] 

becomes 
 

( ) ( ) ( ) ( ) ( ) ( ) .v k u k m
E v k u k m

E v k v k m
E5 0 5c c c d= - = = -a b a b a b abr u r u r u u

 
             (2.11) 
 
Now, the time derivative of the chiral operator was shown above to be 

mi2t
5 0 52 c c c=  and 0 5c c  was given in Eq. (2.9).  One can then write t

52 c  as 
 

( )
( ) ( ) . . .d k

E
m iE b k a k e h c

2
2t

iEt5
3

3

2

2
22 c

r
= - +a a

a

-u! $|#
 

             (2.12) 
 
If this is now integrated between 0 and t, the result is 
 

( ) ( )
( )

( ) ( )( ) . . .t d k
E
m b k a k e h c0

2
1iEt5 5

3

3

2

2
2c c

r
= + - +a a

a

-u! $|#
 

             (2.13) 
 
Let us return now to Penrose’s zig-zag interpretation of the fundamental particles of 
matter (the leptons and quarks), fermions having a spin of ½.  While very attractive, the 
zig-zag model still has at its heart the concept of the point particle.  An alternative will be 
given in the section below titled A Topological Alternative for Charge. 
 
As observed by Halzen, et al.15 , “. . . the same Higgs doublet that generates the W!  and 
Z masses is also sufficient to give masses to the leptons and quarks”.  When the Higgs 
field has a non-zero expectation value it breaks the conservation of weak charge and 
allows eL

-  and eR
-  of Fig. 2.2 to mix so as to form the physical electron.  Because the 

Higgs field can interact with both the eL
-  and eR

-  it forces them to change back and forth 
into each other in the chiral oscillation discussed earlier.  During this oscillation, eL

-  and 
eR
-  lose their independent identity and are transformed into a single massive elementary 

particle.  The same is true for the massless eL
+  and eR

+  that trough interaction with the 
Higgs becomes the massive positron.  
 
In the section on photon zitterbewegung in Appendix 1, it is shown that even a non-
localizable “particle” like the photon can exhibit this behavior, which is usually only 
associated with what historically has been called a point particle.  The photon can, 
however, be localized for a brief moment by an interaction to about its “Compton radius”, 
which corresponds to its classical wavelength; i.e., by assuming E = hν and m = E/c2, one 
has  λc-ph = h/mc = hc/E = c/ν.   
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The frequency of the zitterbewegung associated with the position operator for the 
electron is identical with that of the chiral oscillation related to γ5.  Both oscillations 
vanish if only positive or negative frequency solutions to the Dirac equation are used.  
This strongly suggests that zitterbewegung and chiral oscillations are intimately related 
despite their very different interpretations. 
 
In the zig-zag concept of the electron, eL

-  and eR
-  continually convert themselves into the 

other due to their interaction with the Higgs at the chiral oscillation frequency νch , which 
is the same as the zitterbewegung frequency.  This means the mass m in Eq. (2.1), which 
serves as a coupling constant between these two equations, is being interpreted as a field, 
to quote Penrose, “essentially the Higgs field”; an illustration of this idea is shown in Fig. 
2.3.   
 
Being massless particles, the wavefunction for eL

-  and eR
-  after a localizing interaction 

expands at the velocity of light until the next localizing interaction with the Higgs.  This 
corresponds to a distance c/ νch = ~ 1.3 × 10−12 m, the Compton wavelength of the 
electron.  Another way of looking at this is to realize that the exact time of the interaction 
with the Higgs is associated with a time uncertainty of Δt and since mass before the 
interaction is zero and after is m0c2, the uncertainty relation tells us that  

/ /x c t c m c m c c0
2

0& & mD D= = = = , again the Compton wavelength.  This is also 
shown in Fig. 2.3. 
 
 
 
 
 
 
 
 
 
 
         (a)      (b) 
 

Figure 2.3.  (a) eL
-  and eR

-  on their own are massless, but the quantum mechanical 
mixture acquires mass through interaction with the non-zero vacuum expectation value of 
the Higgs. (b) at each interaction with the Higgs field, there is an uncertainty Δt in the 
time of interaction leading to a spatial uncertainty of Δx = λc.  

 
In the Penrose model, the particles eL and eR  obey the Dirac equation for a particle of 
mass m, written in the chiral form [Eqs. (2.1)] as,  
 

( ) ,

( ) .

p p p

p p p

p e m e

p e m e
L R

R L

0

0

$

$

v

v

+ =

- =

QQ QQVV VV  
 

Higgs 
Interaction |   | ←Δx = λc 

× 

× 

× 

eL
− 

eL
− 

eR
− 

eR
− 

× }Δt 

{ eL
− and eR

− } { eL
− and eR

− } 
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Between Higgs interactions, the massless particles eL
-  and eR

-  obey the same equations 
with m equal to zero.  In Fig. 2.3(a), starting with eL

-  at the bottom, the first Higgs 
interaction destroys the left-handed massless particle eL

-  and creates the right-handed 
antiparticle eR

-  ( eR
-  is the right handed antiparticle of eL

+ ).  The second interaction with 
the Higgs field destroys the right-handed massless antiparticle eR

-  and creates the left-
handed massless particle eL

- .  It is this oscillation that is the source of the mass through 
the relation E = hν; i.e., m = (1/2c2) hνch.   
 
 
3. Beyond Democritus 
 
Interpreting the absolute value of the wave function in quantum mechanics as the 
probability of interacting with a fundamental “particle” such as an electron at a given 
location does not mandate that the electron is a point particle.   As put by Max Born who 
gave us this interpretation, “. . . we are not justified in concluding that the ‘thing’ under 
examination can actually be described as a particle in the usual sense of the term.  . . .  
The ultimate origin of the difficulty lies in the fact (or philosophical principle) that we are 
compelled to use the words of common language when we wish to describe a 
phenomenon, not by logical or mathematical analysis, but by a picture appealing to the 
imagination.”16   
 
The Dirac or Schrödinger equations do not require that their wave functions describe the 
motion of a point particle.  What the mathematics of quantum mechanics tells us is that 
an “elementary particle” is not a “particle” in the sense of classical physics. The advent of 
quantum mechanics mandated that the classical notion of a particle be given up. But 
rather than accept this, there were many attempts in the 20th century to retain the idea of a 
classical particle by a mix of classical and quantum mechanical concepts. Perhaps the 
best was David Bohm’s 1952 theory that introduced the idea of a “quantum potential”, 
which was later show to be equivalent to the usual quantum mechanics. None of these 
were really successful. In the end, we must live with the fact that an elementary particle is 
some form of space-time excitation that can be localized through interactions and even 
when not localized obeys all the relevant conservation rules and retains the “particle” 
properties like mass, spin, and charge.   
 
This should not be terribly surprising since Newton-Wigner17 and Pryce18 showed (see 
discussion in Appendix 2) that a particle with spin cannot be localized to better than its 
Compton radius.  Yet, quantum electrodynamics assumes that the electron is a point 
particle and electron-positron colliding beam experiments show this holds down to 
distances less than 10−18 m.  Even though this is the case, it is straightforward to show 
that the electric charge of an electron cannot be a classical charge distribution of this or 
similar size that interacts with itself.  If it were, its classical self-energy would exceed the 
rest mass energy of the electron.  Another example of how classical concepts should not 
be carried over into quantum mechanics.  Quantum electrodynamics also tells us that the 
effective charge of a point particle is spread out over a distance on the order of the 
Compton radius.  This is apparent when the phenomenon of vacuum polarization is taken 
into account during charge renormalization.   
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Modern physics is telling us is that space-time can support a variety of excitations that 
make up the various “particles” of matter whether short lived or stable.  The basic 
building blocks are the leptons and quarks, all of which are fermions obeying the Dirac 
equation for spin ½.  All are associated with chiral oscillations and become massive by 
interaction with the spatially isotropic non-vanishing Higgs vacuum expectation value.  
In the Penrose model, these oscillations are continually localized by interactions with the 
Higgs field, and none of them need be or should be thought of as point particles. For the 
electron, the minimum localization is the Compton wavelength, but determining the 
minimum localization for quarks is more complicated than simply using the formula for 
the Compton wavelength because of the quark’s color interactions.  Estimates for the 
radius of the “dressed quark” divided by the radius of the proton are in the range of 0.2 to 
0.5.   
 
Perhaps the most counter-intuitive part of replacing the classical idea of a particle is 
accepting that a space-time excitation corresponding to a stable particle can itself carry 
charge, spin, angular momentum, and mass.  But that is what the mathematics and 
physics is telling us.  Such an excitation, say for an electron, is continually localized to its 
Compton wavelength as in Fig. 2.3, which gives it its particle aspects.  It can carry spin 
angular momentum without being a classical particle, as does the photon.  But it is 
perhaps charge that is the most difficult to understand. 
 
 
A Topological Alternative for Charge 
 
Over sixty years ago Wheeler formulated a classical explanation for charge based on 
electric flux threading a general relativistic “wormhole”, which would doubly connect 
spacetime—what he called “charge without charge”.19  Einstein’s field equations allow 
such wormholes.  The concept is illustrated in Fig. 3.1.   
 

 
 

Figure 3.1.  Wheeler’s “charge without charge” concept where 3-dimensional space is 
represented as a 2-dimensional hypersurface with a wormhole.  The dimension off the 
surface has no physical meaning. The lines threading the wormhole are the electric field 
lines.  [Adapted from J.A. Wheeler, Phys. Rev. 97, 511 (1955)] 

 
A modern version of this idea comes from string theory20 where a string, whose length is 
generally thought to be comparable to the Planck length ~10−35m, terminates on a D-
brane (defined below).  The lowest vibrational modes of such strings are used to 
represent the fundamental particles of the standard model.  In fundamental string theory, 
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the strings are generally taken to be infinitely thin, although this need not be the case. The 
string’s charge density, because of its vectorial nature, is often interpreted as a current 
flowing in the string, which on the brane itself is carried by the electric field.  This 
possibility is very attractive and a basic introduction to string theory with a possible 
extension will be given here.  
 
The general term “D-brane” refers to an “object” upon which, for our purposes, string 
endpoints lie.  The letter D stands for the Dirichlet boundry conditions the endpoint must 
satisfy on the brane.  A Dp-brane is an object with p spatial dimensions.  The general 
spacetime dimension is p + 1.  So 4-dimensional spacetime is considered to be a D3-
brane.  An example of a D2-brane with a string having endpoints on the brane is shown in 
Fig. 3.2.  The string is drawn so as to be orthogonal to the brane. Branes with D spatial 
dimensions are also called D-branes.  D-branes are not necessarily hypersurfaces or of 
infinite extent, they can also be finite, closed surfaces.  The additional spatial dimensions 
beyond the dimension of the brane are know as comprising the “bulk”. 
 
It should be mentioned that for representing particles that are fermions, one must 
introduce “superstrings”.  The “world-sheet” of an open string is defined as the trajectory 
of the string in space-time with space-like coordinates Xn .  On this world sheet there are 
two linearly independent tangent vectors given by X2x n  and X2v n , where τ 
parameterizes time and σ parameterizes the distance along the string.  For bosonic 
strings, one uses the classical variable ( , )X x vn  to describe the position of the string.  For 
superstrings, the classical anti-commuting variables ( , )} x va

n , (α = 1,2), are used.  Their 
quantization results in particle states that represent spacetime fermions.  This is one of the 
reasons that supersymmetry is so attractive; the principal other one being that its 
confirmation would allow the strengths of the strong, weak, and electromagnetic forces to 
merge at ~1015 GeV. 
 
To see how string theory might offer a modern incarnation of Wheeler’s “charge without 
charge” we need to introduce the Kalb-Ramond massless antisymmetric gauge field Bµν 
= −Bνµ , which is the analog of the Maxwell gauge field Aµ  of electromagnetics.  In the 
case of electromagnetics, the field strength is given by F A A2 2= -no n o o n .  For Bµν the 
field strength, Hnot , is defined as H B B B2 2 2= + +not n ot o tn t no .  It is generally thought 
that the endpoints of the string shown in Fig. 3.2 have a Maxwell electric charge. 
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Figure 3.2.  The D2-brane extends over the (x1, x2)-plane.  The endpoints of the string are 
free to move over the plane.  The Dirichlet boundary condition for the string is that the 
endpoint of the string cannot move out of the plane.  The dimension on the unmarked 
axis outside the plane should not be thought of as a third spatial dimension belonging to 
the D2-brane. 

 
The string, on the other hand, carries electric Kalb-Ramond charge.  This charge can be 
viewed as a “current” flowing along the string; the string charge density vector is tangent 
to the string.  The action for the brane and the string will have a F Bk

k
0

0  term.  Since F k0  
couples to B k0  it must carry a string charge, but F Ek

k
0 = , so that the Maxwell electric 

field on the brane carries string charge. 
 
As mentioned before, it has been assumed here that the string is orthogonal to the brane.  
This is because for a string ending on a Dp-brane,  where p 2$ , the velocity can be 
freely chosen if the string is orthogonal to the brane, whereas if it is not it must move at 
the velocity of light transverse to the string.  A good discussion of boundary conditions 
and the history of the discovery of branes has been given by Tong.21 
 
To summarize the overall picture given thus far, the ends of the string in Fig. 3.2 or Fig. 
3.3 behave as point charges in Maxwell electromagnetics; the electric field in, for 
example, a D3-brane also carry string charge.  The string charge on the string is a vector 
quantity and is analogous to a Maxwell current along the string.  This is shown in Fig. 3.3 
with one spatial dimension suppressed.  That the endpoints of the string correspond to 
point particles is consistent with the experimental observation, using electron-positron 
colliding beams, that the electron appears as a point particle down to distances less than 
10−18 m.   
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Figure 3.3.  A string beginning and ending on a D3-Brane.  The ends of the string behave 
as Maxwell point charges; the electric field lines in the D3-brane also carry string charge.  
The Kalb-Raymond string charge density is analogous to a Maxwell current along the 
string.   

 
The following discussion explains how a Maxwell charge arises when strings terminate 
on branes.  It comes from the fact that the conservation of string charge fails at the string 
endpoints.  The way string theory solves this issue is to add to the string action two terms 
that couple the Maxwell gauge field Aµ to the Kalb-Ramond gauge field Bµν .  This is 
done so as to preserve gauge invariance.   
 
The field strength, Hnot , defined above, is totally antisymmetric and invariant under the 
gauge transformations  
 

.B 2 2d K K= -no n o o n  
               (3.1) 
 
Here the arguments of Bµν are the string coordinates X(τ , σ).   
 
The part of the action that couples the string to the Bµν field is given by 
 

.S d d X X B2
1

B 2 2x vf= - ab
a

n
b

o
no#  

               (3.2) 
 
 fab  is totally antisymmetric so that when this action is varied using Eq. (3.1) the result is 
 

( ) ( ( )) .(S d d X X d d X XB 2 2 2 2 2 2 2 2d x v x vK K K K= - - = - -x o v
y

v o x
o

x o v
y

v o x
o# #  

               (3.3) 
 
The second equality is a result of X2v y  not being a function of τ and X2x o  not being a 
function of σ. 
 

 

Electric Kalb-Raymond string 
charge density vector j0v  analogous 
to a Maxwell current. 

D3-Brane 

x2 
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Now if Λ is set equal to zero at !3 , the 2x  term vanishes.  Since the string terminates on 
a D-brane, the coordinates Xn  may be divided into those on the brane labeled Xm and 
those perpendicular to the brane labeled Xa.  Then integrating Eq. (3.3) on the brane with 
respect to σ gives 
 

v r=
( ) | .S d X XB m

m
a

a2 2d x K K= +x x 0v=#  
               (3.4) 
 
Because Dirichlet boundary conditions apply at both end points of the string, the term 

Xa
a2K x  vanishes when evaluated at these points.   

 
For SB to be gauge invariant δSB must vanish.  To make this happen one adds a term to 
the action coupling the ends of the string to the Maxwell fields on the brane.  That is, 
 

v r=
( ) | .S S d A X XB m

m2x= + x 0v=#  
               (3.5) 
 
For this to work, one must impose the condition δAm = −Λm .  Doing so immediately 
results in δS = 0 so that gauge invariance is restored.  Now, however, since δFmn = −δBmn 
neither field is independently gauge invariant.  This means that the physical field strength 
must be redefined as Fmn = Fmn + Bmn.  Then on the brane the gauge invariant 
generalization of the Maxwell Lagrangian density is F F4

1 mn
mn- .  Expanding this gives 

 
F F .B B F F F B4
1

4
1

4
1

2
1mn

mn
mn

mn
mn

mn
mn

mn- = - - -  
               (3.6) 
 
The last term can be written as 
 

. . .F B F B2
1 mn

mn
k

k
0

0- = - +  
               (3.7) 
 
Since F k0  couples to B k0  it must carry a string charge, but F Ek

k
0 =  so that Maxwell 

electric field on the brane carries string charge.   
 
The real question is how to interpret the second term of Eq. (3.5),  
 

0v=v r=
( ) | ( ) | .d A X X d A X Xm

m
m

m2 2x x-x x# #  
               (3.8) 
 
It is generally maintained that these terms add a plus and minus Maxwell charge to the 
ends of the string.  But the first term on the right hand side of Eq. (3.7) can be interpreted 
as saying that not only does the Maxwell electric field on the brane carry string charge, 
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but the string in the “bulk” carries the electric field as well.  This is what the F0kB0k term 
in Eq. (3.7) means—the two fields are coupled.  If this is the case, there need be no 
charge at the terminations of the string on the brane but just the emergence of the field 
lines, which would look like charges within the brane; essentially as shown in Fig. 3.3 
with the + and – symbols corresponding to the entering and leaving of the field lines in 
the brane rather than charges.  Gauge invariance is conserved since there is no longer a 
boundary for σ and the 2v  term in Eq. (3.3) vanishes. 
 
Using two parallel branes one can give a modern version of Wheeler’s “charge without 
charge”.  The use of two is important for if only one were used (as in Fig. 3.3) with a 
string having both ends attached to it to represent particles with opposite charge, the 
motion of the charges could possibly affect string tension and hence mass.  With two 
branes having constant separation the motion of the particles need not affect the string 
tension provided the motions of the string ends on each brane mirror each other.  The 
configuration is shown in Fig. 3.4. 
 

 
 

Figure 3.4.  Two brane version of Wheeler’s “charge without charge”.  The dashed lines 
correspond to strings that carry both the Electric Kalb-Raymond string charge density 
vector j0v and the Maxwell electric field.  The same is true of the Maxwell field lines 
within the two branes as suggested by the coupling F Bk

k
0

0 .  The dots at the end of the 
strings indicate where the fields enter (+) or leave (−) the branes—not actual charges.  
The strings move in tandem with the oppositely “charged” string ends and the spacing 
between the branes does not change during the motion so as to keep the mass associated 
with the string ends constant.  Motion of a string end in brane 1 is mirrored by motion of 
the oppositely charged string end in brane 2. 

 
There is no necessity to associate charges with the string ends since neither the Kalb-
Raymond string charge density vector or Maxwell electric field terminates there.  But it 
remains to discuss the nature of the string itself. 
 
The trajectory of a zero-dimensional point particle is a one-dimensional curve.  In string 
theory a string is often taken to be the same thing—a one-dimensional space.  Since the 
lowest vibrational modes of such strings are used to represent the fundamental particles 
of the standard model, if the string terminates on a brane, the oscillations within the brane 
of the string endpoint could be identified with the zitterbewegung of the particle.  So long 
as the string diameter is zero, the oscillations of the end point would be equivalent to the 
oscillations of a point particle.  There is then an equivalency between the concept of a 
point particle and a string with zero thickness.  
 

Brane 1 

Brane 2 
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Tong (Ref. 21) considers the magnetic flux tubes in Type II superconductors and the 
chromo-electric flux tubes in QCD to be strings and notes that there are two length scales 
associated with the string, the tension and the width of the string, where the tension is the 
energy per unit length of the string.  
 
If the string were allowed to have a finite diameter when it terminates on a brane, the 
endpoint of the string would not correspond to a point particle.  For an electron, the 
diameter would be similar to the Compton wavelength, although the field could be 
localized to far smaller distances.  Since in the model of Fig. 3.4 the string carries the 
Maxwell electric field as well as the Kalb-Raymond string charge density, allowing the 
string to have a finite diameter limits the strength or magnitude of the Maxwell electric 
field in the string (intuitively, the electric field strength is proportional to the number of 
“field lines” divided by the area perpendicular to the field lines). From the point of view 
of an observer in either of the branes, the situation looks like that shown in Fig. 3.1.  
 
An ordinary string has transverse oscillations that propagate at a velocity of /v T n= , 
where T is the tension and µ is the linear mass density.  Consider again the electron.  If 
the Compton wavelength sets the scale, because the tension is given by the energy per 
unit length one has /( / )T m c h m ce e

2= .  Substituting this into the expression for the 
velocity yields v = c.  This is consistent with the string oscillations being identified with 
the zitterbewegung and with the eigenvalues of the Dirac velocity operator a  being c!  
(see Appendix 2 on zitterbewegung).  In this case, the distance between the branes in 
Fig. 3.4 would be the Compton wavelength h/mec. 
 
The string theory representation of the particles of the standard model of particle physics 
introduces additional complications. In order to accommodate the elementary fermionic 
building blocks of leptons and quarks, three parallel branes that carry color (red, blue, 
green) are introduced as well additional branes corresponding to isospin and chirality.  
The three color branes correspond to SU(3)C.  Quarks are then open strings with one 
endpoint on one of these branes.  Gluons have both ends terminating on one of these 
branes.  Antiquarks correspond to oppositely oriented strings. The other ends of such 
open strings terminate on branes having the appropriate isospin and chirality.  The 
fermions in the standard model require the specification of color, isospin, and 
hypercharge.  
 
If strings stretch between parallel but not coincident branes their quantum fluctuations 
give rise to massive particles with a mass proportional to their separation because of 
string tension.  If they are coincident the fluctuations are massless.  It should be 
remembered that in the standard model masses are not allowed for chiral fermions before 
symmetry breaking.  The zero mass requirement can be accommodated by having the 
color branes intersect the branes corresponding to different chirality and isospin. Then the 
fermion fields will be represented by strings localized to the intersections.  The branes 
that intersect the color branes are know as left and right branes, which correspond to the 
left and right handed particles.  The various sets of branes are then color branes, left and 
right branes (sometimes called the weak branes), and leptonic branes.   
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 (a)     (b) 
 

Figure 3.5.  (a) Open strings with one end on the brane.  The ones on the left directed 
toward the brane correspond to green, blue, and red quarks; those on the right directed 
away from the brane are the corresponding anti-quarks. (b) some of the branes of the 
standard model.  The various particles are appear at the crossings.  For zero-mass 
particles the parallel branes are coincident. 

 
All of this adds up to a graphical representation of the standard model in terms of branes.  
Some of the way this looks is shown in Fig. 3.5.  When the branes are coincident their 
fluctuations are massless and mix to form a matrix valued field.    
 
To go beyond this point, the reader is referred to the standard texts on string theory. 
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SUMMARY 
 
The concept of the charged point particle already had serious problems in classical 
physics and the earlier parts of this essay should have made it clear that the same thing is 
true in quantum mechanics.  All indications are that the concept of a point particle loses 
its meaning as one approaches the Compton wavelength—notwithstanding the fact that 
“point particles” can be localized to less than this by high energy scattering experiments.   
 
Wheeler’s attempt to introduce the concept of  “charge without charge” in the mid-1950s 
failed primarily because general relativity could not be quantized, which—despite 
enormous effort since then—remains true today.  The advent of string theory may offer 
an alternative to the point particle despite the fact that there is no experimental evidence 
that string theory is more than a fascinating and beautiful mathematical exercise.   
 
The conception of introducing additional space-like dimensions to four-dimensional 
spacetime coupled with the concept of strings that could exist in this enlarged space 
introduces the possibility of a new formulation of Wheeler’s “charge without charge”.  
To do so one must allow strings to have a width comparable to the Compton wavelength 
and allow them to carry an electric field just as an electric field can carry string charge.  
This is strongly implied by the coupling term F Bk

k
0

0-  in Eq. (3.7).   
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APPENDIX I: Electron Channeling Resonance in Crystals 
 
Consider a line of atoms, corresponding to those of a silicon crystal along the <110> 
direction, having a spacing d.  Electrons traveling parallel to this line of atoms are 
assumed to carrying an internal clock having a frequency corresponding to the de Broglie 
frequency.  Call the time measured by this clock T, while that in the laboratory is 
designated by t.  The de Broglie frequency is ω =m0c

2 / ! and ω changes by 2π radians in 
one cycle.  As the electron moves along its path, the phase velocity represents the change 
in !r  with respect to T; that is, 

d!r (t)
dT (t)

= vph.  

            (A1.1) 
 
Then, d / vph = ΔT .  The phase angle change as the electron moves from one atom to the 
next is  

Δϕ = ΔTω =
d
vph

"

#
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2
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'.  

            (A1.2) 
Solving for ΔT, 

T = Δϕ
ω

= Δϕ
!

m0c
2

"

#
$

%

&
'.  

            (A1.3) 
 
Now set Δϕ =nπ (note that odd n only changes the sign), 
 

ΔT( )n = nπ
!

m0c
2

"

#
$
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&
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n
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m0c
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            (A1.4) 
 
This is n/2 times the de Broglie period.  FromΔT = d / vph ,  
 

vph( )n = d
n
2
!
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#
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&
m0c
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&.  

            (A1.5) 
 

Now vphvg = c
2 so that vph =

c2

vg
=
m0c

2

m0vg
=
E
p

 and 
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En

c
= p

vph
c
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$

%
& . 

            (A1.6) 
 
As will be shown shortly, vg = (1−1/158) so that there is little error in replacing 
p =m0vg with m0c .  Also, γ ~ 1 so that there is no need to make a relativistic correction.  
Thus, 

En

c
=m0c

2 vph
c

!

"
#

$

%
&
1
c
.  

            (A1.7) 
 
As mentioned earlier, for silicon along the <110> direction, d = 3.84×10−10m .  
Substituting this and the numerical values for the other symbols in Eq. (A1.5), and using 
the result in Eq. (A1.7), gives 

En

c
=
2
n
!

"
#
$

%
&m0c

2 158( )1
c
.  

            (A1.8) 
 
If the units of energy are now chosen to be MeV, the final result for the momentum is 
 

En

c
=
2
n
!

"
#
$

%
&0.51 158( )1

c
=
2
n
!

"
#
$

%
&80.58Mev / c . 

            (A1.9) 
 
The data shown in Fig. 1.1 imply that n = 2. One can obtain the zitterbewegung 
frequency rather than the de Broglie frequency by using d/2 rather than d in the 
expressions above or by assuming n = 1, but at this point there is no strong experimental 
reason for doing either.   
 
So regardless of whatever discrepancies may exist between modeling results and the 
experimental data, there would appear to be good reason to believe de Broglie’s 
supposition that each particle carries with it a kind of “internal clock”, which had 
previously been verified only indirectly by the many successful tested implications of the 
de Broglie relation. 
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APPENDIX 2: Zitterbewegung 

 
The first part of this section discusses the zitterbewegung of particles obeying the Dirac 
equation, and the second part shows that the photon also exhibits zitterbewegung.  The 
purpose of showing that this is the case is to disassociate zitterbewegung from the 
conception of a point particle and show that it is even exhibited by the familiar 
electromagnetic wave. 
 
With c = 1, the Dirac Hamiltonian is H p ma b= +$v v , where av  is the velocity /dr dta =v v  

and β is four by four matrix β = 1 0
0 −1

"

#
$

%

&
' . 

 
In the Heisenberg representation, the time derivative of an operator is given by 
dO
dt

= i H,O[ ]+ ∂O
dt

, so that for the position operator !r , 

, , .dt
dr i H r i p ra a= = =v v v v v v! !$ $ . 

            (A2.1) 
 
Since av  only acts on spin variables, this defines each component of !"r  as a constant 
matrix.  The time derivative of av  is 
 

, .dt
d i H i H H i H2a a a a a= = + -
v v v v vQ V! $ . 

            (A2.2) 
 
Now if one expands the first term on the r.h.s. of the latter equation in terms of 

, ,1 2 3a a a a=v Q V  and , ,p p p p1 2 3=v Q V, the result is 
 

.dt
d ip i H2 2a a= -
v

v v  
            (A2.3) 
 
One can solve this equation for av  by integrating from 0 to t and, remembering that 

/dr dta =v v , integrate again between the same limits to obtain the solution for !r , yielding 
 

( ) ( ) ( )r t r H
p

t i H
p

H
e0 0 2

iHt2

a= + + -
-T Y

. 
  
(A2.4) 

 
The term e iHt2-  corresponds to a circular motion since it can be written as 
( )cos sinH i H2 2- .  At rest, H = mc2 and writing e iHt2- as e i t~- , and putting in the & , 
which has been set equal to unity in this calculation, gives /mc2 2 &~ = .  This is the 
frequency of the zitterbewegung. 
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The classical law for uniform rectilinear motion is given by the first two terms on the 
right hand side when they are not operators.  It is the last term that is responsible for the 
zitterbewegung, and it is usually interpreted as meaning that the particle samples a region 
on the order of its Compton wavelength, /r mc'cd , about the point r .  
Zitterbewegung is generally thought to be due to interference between negative and 
positive frequency states, as was originally proposed by Schrödinger. 
 
It is at this point that the interpretation of fermions, such as electrons and quarks, as point 
particles runs into serious problems.  This comes about by calculating the velocity 
eigenvalues of the velocity operator a .  Putting back the constant factors of c in the 
Dirac equation one gets ( )r t c c 0a c c= =voo .  Using the explicit matrices for the γ 
matrices, one obtains for the eigenvalues c! .  This is usually interpreted to mean that 
while the average velocity of the particle may be less than c, the instantaneous velocity is 
always c! , but the meaning of this, given that the particles are massive and charged, is 
far from clear.   
 
In a paper more than fifty years ago, Huang22 used the expectation values of r  and 
r r# vo in a wave packet representing the electron to show that the zitterbewegung could be 
interpreted as a circular motion about the direction of the electron spin.  The radius of the 
motion was / m2' , the Compton wavelength divided by 2π.  The intrinsic spin was then 
the “orbital angular momentum” of this motion, and the current produced gives rise to the 
intrinsic magnetic moment.  This is derived from Dirac theory and is not a classical 
interpretation of the results.  However, implicit in his discussion is the assumption that 
the electron is a point particle.  This is also an assumption made by many others who 
have attempted to formulate classical models of fermions based on the zitterbewegung 
phenomenon.  The implication, since the eigenvalues of the velocity operator are c! , is 
again that a point particle carrying both mass and charge can move in a circular orbit at 
the velocity of light.  Clearly, there is a problem. 
 
Photon Zitterbewegung 
 
It should be remembered that a photon is not a true particle in that it is not localizable—a 
subject that will be discussed latter in this section—but represents the minimum amount 
of energy that an electromagnetic wave can carry, and a wave can only carry multiples of 
this minimal amount.  It was Einstein that introduced the idea of a photon in an attempt to 
deal with the wave-particle dilemma early in the history of quantum mechanics.  To 
quote Leon Rosenfeld, Einstein made the qualitative suggestion “that the photons, or the 
light quanta as they were called then, were some kind of singularity, of concentration of 
energy and momentum inside a radiation field.  The radiation field would so to speak 
guide the photons in such a way as to produce also the interference a diffraction 
phenomena . . . .”23  The confused interpretation of a photon as a particle continues to this 
day.  Einstein’s suggestion is found in the de Broglie-Bohm interpretation of quantum 
mechanics. 
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To discuss photon zitterbewegung, one needs a wave equation for the photon.  The 
approach that will be used to find one is based on that of Bialynicki-Birula.24  The result 
will be an Schrödinger like wave equation for the photon.  This will then allow the 
Hamiltonian for the photon to be identified. 
 
D’Alenbert’s equation  

c
1

t2
22 U DU=  

            (A2.5) 
 
will be used a guide for finding an analogous relation for a spin-1 massless particle like 
the photon.  Taking the square root of this equation gives 
 

.c
1

t 42 U DU U= = v  
            (A2.6) 
 
 
The photon having spin-1 suggests that the three Hermitian matrices representing 
infinitesimal rotations for spin-1, S ii kl iklf= -Q V  be the starting point for finding a wave 
equation for the photon.  These matrices are 
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KKKKKK

J

L

KKKKKK

J

L

KKKKKK

N

P

OOOOOO

N

P

OOOOOO

N

P

OOOOOO  
            (A2.7) 
 
They obey the anti-commutation relations, 
 

.S S S S 2i j j i ab ij ab ai bj aj bid d d d d d+ = - -Q Q Q QV V V V! $  
            (A2.8) 
 
Multiply both sides of this relation by i j4 4 , and rearrange the terms to get 
 

.S S ab ab a b
2$ 4 $ 4 4 4 4d= -v v v vQ QV V! $  

            (A2.9) 
 
If we let this operator relation operate on }v , 
 

.S S ab ab a b
2$ 4 $ 4 4 4 4} d } }= -v v v v v v vQ QV V! $  

                     (A2.10) 
 
The first term on the right hand side vanishes unless a = b; choose this to be the case.  
Then when the remaining index is summed over, the second term becomes $d d }v v vR W , 
which—since there are no sources—will be assumed to vanish.  The resulting equation is 
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true for all a so the index can be dropped.  Dropping the }v  from both sides leaves only 
the operator relation, which can be written as 
 

.S or S2 2$ 4 4 ! $ 4 4= =v v v v v vQ QV V  
                  (A2.11) 
 
Now multiply both sides by }  and compare the result with Eq. (A2.6).  This comparison 
suggests that } , the wave function for the photon, be considered to be a 3-component 
spinor 
 

,
1

2

3

}
}
}
}

=

J

L

KKKKKKK

N

P

OOOOOOO  
 
                     (A2.12) 
where the i}  are scalar functions.  On a component basis then, we have 
 

, .S which is to be compared to c
1

i i t! $ 4 4 42} } U U= =v v v vQ V  
                     (A2.13) 
 
This leads to the final classical result to be written as 
 

.c S1
t ! $ 42 } }= v vQ V  

                    (A2.14) 
 
This can be converted into a quantum mechanical expression by simply multiplying both 
sides by i&   
 

] .[i ci S c S i c S pt ! $ 4 " 4 " $$&2 & &} } } }= = - =v v v v v vQ R RV W W  
                     (A2.15) 
 
The Hamiltonian for the photon is then c S p" $v vR W .  For positive energy choose the + sign, 
which corresponds to +helicity.  Since the Si are pure imaginary, sign reversal 
corresponds to complex conjugation.   
 
Using Eq. (A2.7), the Hamiltonian in component form can be written as 
 

.H c S p c S p c S p i c pkl kl i i kl i kl i ikl i$m m m m f= = = = -v vR Q QW V V  
                     (A2.16) 
 
To be consistent with Kobe, 25 , 26  relabel the indices by , ,k i l k i j" " "  giving 
H i c pik ijk jm f= .   
 



 
 

28 

Hamilton’s equation for the velocity is /v H pj j2= . If v and H are considered to be 
operators, one can write 
 
 

.v H i c p i cj ik p ik p ijk j ijkj j2 2 m f m f= = =Q QV V  
 
                     (A2.17) 
 
Thus, H i c pik ijk jm f=  is the same as H v p$= v v .  This is the form of the Hamiltonian that 
will be used to compute the zitterbewegung. 
 

The time derivative of an operator in the Heisenberg representation, dO
dt

= i H,O[ ]+ ∂O
dt

, 

can be used to compute the derivative with respect to time of the velocity operator, 
 

, .dt
dv i v H H v1 $&= =-v v vxQ V ! $  

                     (A2.18) 
 
Following Kobe, the dyadic form for H has been introduced to facilitate the integration of 
this equation when vv  and pv  are operators.  Since dyadic notation is used only sparsely in 
the modern physics literature, the key to understanding Eq. (A2.18) is the relation  
 

( ) ( ) .AB C A B C$ $=v v v v v v  
                     (A2.19) 
 
The first term on the left hand side within the parentheses is a dyad; note that there is no 
operation defined between the vectors.  Thus, ( ) ( ),H v vp v v p v"$ $ $=v vv v v v vx  and 
 

( ) .dt
dv i v p v i vH1 1$& &= =- -v v v v vQ QV V  

                     (A2.20) 
 
Operating on the left with v 1-v  and integrating from 0 to t gives 
 

( ) ( ) .v t v e0
i Ht= &-v v  

                     (A2.21) 
 
Note that while the calculation is somewhat tedious, one can explicitly show that 
, ( )v H v p v$=v v v v! $  using the matrix definitions for vv  given above in Eq. (A2.17). 

 
Now vv  is a constant velocity operator, which means that ( )v tv  depends entirely on ( )v 0v .  
At t = 0, the velocity is directed along the momentum, ( )v cp0 =v t  , where 

/ | | /p p p p p= =t v v v .  Then ( )v tv  can be written in terms of its components parallel and 
perpendicular to pt , as ( ) ( ) ( )v t v v0 0= + =zv v v .  At t = 0, only ( )v 0zv  is not zero but at a later 
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time this is not the case, so that in terms of the parallel and perpendicular components 
one can write 
 

( ) ( ) ( ) .v t v v e0 0
i Ht= + =
&

z
-v v v  

                     (A2.22) 
 
The only condition is that p v 0$ ==t v .  If Eq. (A2.22) is integrated, we get what Kobe calls 
a “displacement operator” (it cannot be called a “position operator” since the photon is 
not localizable), which leads to a short digression on position operators in quantum 
mechanics.   
 
Newton and Wigner and Pryce have given thorough discussions of position operators.  It 
is the spin that is responsible for the photon’s non-localizability,27  If the photon had spin 
zero, it would be localizable.  Newton-Wigner derive an expression for the position 
coordinate for arbitrary spin, but for spin ½ it agrees with Pryce who defines the center of 
mass in coordinates where the coordinates taken in pairs have vanishing Poisson 
brackets.  In such a frame, the total momentum vanishes, and the center of mass is at 
rest—a result that is frame dependent.  Note that the center of mass of a single particle is 
the same as the position of the particle.  Pryce concludes, “From the point of view of 
relativistic quantum mechanics the only ‘position vector’ that has much interest is the one 
which is relativistically covariant . . . The fact that its components do not commute leads 
to an uncertainty in the simultaneous measurement of order /mc& ”.  Or, as put by Bacry, 
“either it is impossible to measure any coordinate, that is there is no position operator, or 
the position operator has three non-commuting components”.  In particular, massive 
particles with spin can be localized to a minimal uncertainty in one frame of reference, 
but in another frame it will not be localized—localized states are not transformed into 
localized states under Lorentz transformations. 
 
Returning to the discussion of Eq. (A2.22), remembering that ( ) ( )/v t dx t dt=v v  the 
integral of the equation is   
 

( ) ( ) ( ) .x t v dt v e dt0 0
t

i Ht

t

0 0

= + =
&

z
-v v v# #

 
                     (A2.23) 
 
But rather than integrating this equation in its present form, it is advantageous to first 
determine the form of ( )v t=v . 
 
It was shown in Eq. (A2.15) that the Hamiltonian for for the photon wave function is 

c S p" $v vR W .  The positive sign was chosen corresponding to a positive helicity.  What the 
± sign means is that there are two independent parts of the wave function corresponding 
to the positive and negative states of helicity.  Bialynicki-Birula introduced a 6-
dimensional wave function with a single evolution equation to deal with the two helicity 
states of the photon.  Another way to introduce helicity, following Kobe, is to write 
( )v 0=v  in Eq. (A2.23) in terms of two orthogonal components such that the two circular 

polarization vectors eft , where 1!f = , are given by   
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.e v i v

2
1 f= += =f lt v vQ V

 
                     (A2.24) 
 
The arrangement of these vectors is shown in Fig. (A2.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (A2.1).  The arrangement of the three vectors ( )v 0=v , ( )v 0=lv , and the momentum 
( )p v 0=$t v  and ( )v 0=lv  have the same magnitude and are π/2 out of phase. 

 
Given these definitions, the time variation ( )v t=v  can now be written as 
 

( ) ( ) ( ) ,v t v e v e0 0 ( )i t i t 2= += = =
~ ~ f r+lv v v  

                     (A2.25) 
 
where /H '~ = .  It is important to keep in mind that despite the somewhat misleading 
vector notation, ( )v 0=v  and ( )v 0=lv  are operators.  As vectors they and pt  only have one 
component as seen in Fig. (A2.1).  The vector notation is useful, however, since it implies 
that 
 
( ) [ ( )] [ ( ) ] ( )v p v v p v0 0 0 0$ # # $== = = =v t v v t v , or ( ) [ ( )] [ ( )] ( )v p v p v v0 0 0 0 0$ # # $+ == = = =v t v t v v , 

 
which is the same as ( ) ( ) ( ) ( )v v v v0 0 0 0 0$ $+ == = = =l lv v v v .  The operators ( )v 0=v  and ( )v 0=lv  
thus obey the anti-commutation relation and therefore do not commute.28   
 
If the exponentials in Eq. (A2.25) are expanded, the real part is taken, ( )v tv  may be 
written as 
 

( ) ( ) ( ) ( ) .cos sinv t v v t v t0 0 0~ f ~= + -= =z lv v v v  
                     (A2.26) 
 
This equation may now be integrated, giving 
 

pt  

x 

z 

y 

( ) ( )v p v0 0#== =lv t v  
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( ) ( )
( )

( )
( ) ( )

.sin cosx t x
v

v t
v

t
v

t0
0

0
0 0

f ~ ~ ~ f ~ ~- - = + += = =
z

l l
v v

v
v

v v# &
 

 
                     (A2.27) 
 
  Kobe calls the second term on the left hand side the “constant displacement”. ( )v t0zv  is 
corresponds to the displacement along the direction of the constant momentum pt . The 
amplitude of the zitterbewegung is c/ω and is a consequence of the magnitude of the 
eigenvalues of the velocity operators being c.  c/ω is, of course, the wavelength divided 
by 2π. But since the wavelength depends on the frame of reference, this is a good 
example of the non-localizability of the photon.  The last two terms explicitly display the 
zitterbewegung.   
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APPENDIX 3: Spontaneous Electroweak Symmetry Breaking 

 
Spontaneous symmetry breaking is most easily explained by looking at global symmetry 
breaking, which means that gauge transformations are not space-time dependent.  The 
simplest example is that of U(1).  The general Lagrange density for a complex scalar field 
φ = φ1 + iφ2  is  
 

L = ∂µφ ∂
µ
φ
∗
− V φφ

∗ .  

            (A3.1) 

For the potential V, one chooses a form originally proposed by Ginzburg and Landau 

before the BCS theory of superconductivity.  This type of potential was intended to 

represent the Helmholtz free energy of a second order phase transition. The reason for 

choosing it here is that this form of potential works to give the desired result (and 

possibly tells us something about the nature of the vacuum) even though it was intended 

as a phenomenological description of the free energy density of a superconductor.  In 

gauge theory it provides a type of self-interaction of the Higgs field. It is given by 

 

V φ, φ
∗ = µ2φ ∗

φ + λ φ
∗
φ

2

.  

            (A3.2) 

The self-interaction comes from the λ term.  The extrema of this function are found by 

taking the first and second derivative with respect to |φ| and setting the result equal to 

zero. Doing the algebra (and using the definition of φ) results in 

 

−
µ2

2λ
= φ

∗
φ = φ1

2
+ φ2

2 =: a2.  

            (A3.3) 

φφ* = |φ |2, and a2 is real for the choice λ  > 0, µ2 < 0, which we make here.  There is also 

the solution φ = φ∗ = 0.  Examining the second derivative tells us that this solution is a 

relative maximum and that the solution at a2 = −µ2/2λ is a relative minimum.  In quantum 

field theory, φ becomes an operator whose minimum corresponds to the vacuum 
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expectation value a0 0 2 2z = .  A sketch of the potential given in Eq. (A3.2) is 

shown in Fig. (A3.1). 

 
Figure (A3.1).  A sketch of the Higgs potential with λ > 0 and µ2 < 0.  Although the 
components of φ are drawn as coordinates, it should be remembered that φ is a field.  The 
minima of the potential lie along the circle of minimal potential of radius a that comprise 
a set of degenerate vacua related by a rotation about the axis corresponding to the 
magnitude of the potential.  The potential along the circle, in the ξ direction tangent to the 
circle, is constant.   It therefore takes no energy to move along this path and motion along 
it corresponds to the massless mode, while motion in a plane containing the V-axis does 
take energy and corresponds to the massive mode. 

 

Let us now transform to polar coordinates so that 

 

φ x = ρ x eiθ x ,  

            (A3.4) 

where x is the space-time coordinate.  The vacuum is then <0|φ |0> = <0|ρ |0> = a and 

<0|θ |0> = 0.  The degenerate vacua are then connected by a U(1) symmetry 

transformation.  Note that the U(1) phase symmetry is destroyed as a result of the vacuum 

being given by the choice of ρ = a and some particular value of θ ;  it is the specification 

of θ that breaks the symmetry.  We will be interested in small oscillations around the 

vacuum state located at the circle of minimal potential.  The quanta of these oscillations 

correspond to physically interesting particles.  Because the minimum of the potential lies 

at a radial distance a from the origin, the following transformation is made: 
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φ x = ρ ′ x + a eiθ x .  

            (A3.5) 

 

As a result the vacuum is now <0|ρ´ |0> = <0|θ |0> = 0.  If this φ is then substituted into 

the Lagrangian given in Eqs. (A3.1) and (A3.2) there results, after a bit of algebra, a 

kinetic term and the potential term 

V = λ ρ ′
4

+ 4aρ ′
3

+ 4a2ρ ′
2

− a4 .  

            (A3.6) 
 
The quadratic term in ρ´ implies that ρ´ has a mass of 4λa2.  Spontaneous symmetry 
breaking has generated this mass.  Notice that there is no similar term in θ 2, implying 
that θ is a massless field.  This can be thought of as being a consequence of there being 
no restoring force in the θ-direction.  φ1 and φ2 started out as two fields satisfying the 
Klein-Gordon equation.  After symmetry breaking we have a massive field ρ´ and a 
massless field θ.  Such massless fields are know as Goldstone bosons.   
 
The electroweak spontaneous symmetry breaking in the Standard Model has to do with 
the breaking of a local SU(2) gauge symmetry, which results in the elimination of the 
unwanted Goldstone bosons.  This process is known as the Higgs mechanism.  In this 
case, one can write the Higgs field as a single Higgs doublet in the unitary or “u” gauge 
as29 
 

( )
,

v h x v2
1 0

2
1 0

0z z z=
+

= =T SY X
 

                       (A3.7) 
 
where /v 2n m= -  and φ0 is the minimum value of φ.  The small oscillations of the 
Higgs field h(x) around the vacuum state located at the circle of minimal potential 
average to zero.  
 
Under spontaneous symmetry breaking, the interaction Lagrangian for the first family of 
leptons (e, νe, u, d) in the “u” gauge is  
 

L ( ) ( ) ( ),G v e e e e G v u u u u G v d d
2 2 2
e

L R
u

L R
d

L Rint = + + + + +L L LR R Rd d
  

            (A3.8) 
 
where, for example, e and e  represent the appropriate Dirac spinors.  The point is, that 
the electron and quarks have acquired the masses   
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, , , .m G v i e u d
2

i
i= =

 
            (A3.9) 
 
The masses of the fermions appear as parameters in the theory and must be put in by 
hand.  The same is true for the mass of the Higgs boson, which can be found as follows:  
 
The Lagrangian of a Lorentz invariant scalar field can be written as 
 

L ( )( ) .m2
1

2
1 2 22 2z z z= -n

n

 
                     (A3.10) 
 
If the Lagrangian for a scalar field with a symmetry breaking potential is simplified to    
 

L ( ) ,T V 2
1

2
1

4
12 2 2 42 z n z mz= - = - +nl S X  

                     (A3.11) 
and ( ) ( )x v h xz = +  is substituted, one obtains 
 

L ( ) . . . .h v h2
1 2 2 22 m= - -nm  

                     (A3.12) 
 
Comparing this to the Lagrangian in Eq. (A3.10) suggests that m v2h

2 2m= . 
 
In the Standard Model, the Higgs mass mh is related to the values of the W boson and the 
top quark.  The ATLAS AND CMS Collaborations30 have experimentally determined the 
Higgs mass by using the decay channels h → ZZ → (a combination of four electrons or 
muons whose total charge adds up to zero), and h → γγ.  The result was mh = 125.09 
GeV. 
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