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ABSTRACT 
 
Dark matter, first postulated by Jacobus Kapteyn in 1922 and later by Fritz Zwicky in 1933, has 
remained an enigma ever since proof of its existence was confirmed in 1970 by Vera Rubin and 
Kent Ford by plotting the rotation curve for the Andromeda galaxy.  Here, some concepts from 
string theory and topological change in quantum cosmology are used to formulate a new model 
for dark matter.  The density profiles of dark matter halos are often modeled as an approximate 
solution to the Lane-Emden equation.  Using the model proposed here for dark matter, coupled 
with previous work showing that the approximate solution to the Lane-Emden equation can be an 
exact solution of the Einstein-Maxwell equations, provides a new insight into the possible nature 
of dark matter. 
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Introduction 

Dark matter, first postulated by Jacobus Kapteyn in 1922 and later by Fritz Zwicky in 1933, has 

remained an enigma ever since proof of its existence was confirmed in 1970 by Vera Rubin and 

Kent Ford by plotting the rotation curve for the Andromeda galaxy.  Two iconic images related to 

dark matter are shown below. 

  
 
Rotation curve [Adapted from T.S. Albada, et al., “Distribution of Dark Matter in the Spiral Galaxy NGC 3198”,  
ApJ, 295, 305 (1985)]; Bullet Cluster (1E0657-56) Composite Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et 
al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; 
Magellan/U.Arizona/D.Clowe et al. 

 

The rotation curve for NGC 3198 shows that the velocity of visible matter is essentially flat for 

distances greater than ~5 kpc from the center of the galaxy, instead of having a Keplerian fall-off 

proportional to 1/r (See the ApJ paper for a discussion of the spherical halo and exponential disk).  

The composite image on the right shows the relatively recent collision of two galaxy clusters.  The 

two pink areas contain most of the ordinary mass of the two clusters, the bullet-shaped one having 

passed through the other larger cluster.  In the process of the collision, the temperature of the 

normal matter is increased and X-rays are emitted that were detected by the Chandra X-Ray 

Observatory.  The blue areas are a map of the invisible matter made by using gravitational lensing, 

where light from objects more distant than the bullet cluster is bent by intervening matter.  The 

normal matter shown in pink is clearly separate from the majority of the matter comprising the 

clusters shown in blue.  The conclusion being that most of the matter in the clusters is dark matter. 

 

In this paper, some concepts from string theory, along with the possibility of topological change 

through quantum tunneling, are used to construct a scenario for the evolution of the early universe 
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and possibly give some insight into the nature of dark matter.  The scenario envisions the very 

early universe as a 3-sphere that plays the role of a brane in string theory where the ends of open 

strings bearing a Kalb-Ramond charge are terminated.  As the universe expands, still in its early 

phase, its topology changes from being a positively curved 3-sphere to being negatively curved, 

which is consistent with recent data showing that the universe may indeed be negatively curved.  

While such a topological change would classically imply the appearance of acausal features, that 

need not be the case for quantum topological transitions in the early universe.  The possibility that 

the charged end points of terminated strings can play the role of dark matter is discussed and it is 

shown that such dark matter gives an exact solution to the Einstein-Maxwell equations that 

matches the density profiles of dark matter halos that are generally modeled as an approximate 

solution to the Lane-Emden equation.   

 

Section 1 introduces some features from string theory; Section 2 discusses D3-branes and 

Friedmann-Lemaître-Robinson-Walker cosmological models; the Kalb-Ramond charged string 

terminating in 𝕊" is treated in Section 3; Section 4 discusses a scenario for the appearance of only 

one sign of “dark” charges in 𝕊"; the evolution of the universe and topological change is covered 

in Section 5; Section 6 gives a string model for dark matter; and Section 7 discusses dark matter 

as charged dust now based on string theory.  

 

1. Some concepts from string theory 

There are many excellent books on string theory that would expand on this limited conceptual 

introduction.  Two of the more accessible are by Zwiebach1 and Tong2.  String theory uses a (D+1)-

dimensional Minkowski space with D spatial dimensions. 

 

The Kalb-Ramond massless antisymmetric gauge field Bµn = -Bnµ , can be viewed as the analog 

of the Maxwell gauge field Aµ of electromagnetics.  In the case of electromagnetism, the field 

strength is given by .  

 

For Bµn the field strength, 𝐻$%&, is defined as 𝐻$%& = 𝜕$𝐵%& + 𝜕%𝐵&$ + 𝜕&𝐵$%,  𝐻$%& being a 

totally antisymmetric tensor corresponding to a torsion field (for further discussion, see Appendix 

A).  The theory that allows space-time to have torsion is the Einstein-Cartan theory, which is a 

F A A2 2= -no n o o n
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modification of general relativity that in the cosmological context would have only a very slight 

effect.3  The usual Einstein-Hilbert action is 

 

𝑆,-. =
1

16𝜋𝐺 3𝑑
5𝑥7−𝑔	 𝑅 

                 

(1.1) 

where R is the scalar curvature and the other symbols have their usual meaning.   

 

If the space allows torsion, the torsion tensor is 

𝑇=>
					$ = Γ=>

								$ − Γ>=
								$. 

    (1.2) 

The Einstein-Cartan action in terms of the Riemannian scalar curvature is 

𝑆 =
1

16𝜋𝐺3𝑑
5𝑥7−𝑔	 𝑅@, 

    (1.3) 

where 

𝑅@ = 𝑅 + 2𝑇		>;=
						=> − 𝑇=>

				>𝑇D
	=D + E

5
𝑇=>D𝑇=>D +

E
F
𝑇=>D𝑇D>=. 

    (1.4) 

 

For a completely antisymmetric torsion tensor, the Einstein-Cartan action reduces to 

 

𝑆,-H =
1

16𝜋𝐺 37−𝑔	𝑑
5𝑥I𝑅 − 𝐻=>D𝐻=>DJ, 

𝐻=>D𝐻=>D = −E
5
𝑇=>D𝑇=>D −

E
F
𝑇=>D𝑇D>=. 

 

    (1.5) 

where the field 𝐻$%& is derivable from a tensor potential Bµn  so that 

 𝐻$%& = 𝜕$𝐵%& + 𝜕%𝐵&$ + 𝜕&𝐵$%.  This Bµn is identical with the Kalb-Ramond antisymmetric 

tensor field in string theory. As is seen from Eqs. (1.1) and (1.5), when the torsion vanishes the 

Einstein-Cartan action reduces to the Einstein-Hilbert action.4  For a completely antisymmetric 
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torsion tensor, the possible metric connections correspond to geodesics that are the same as those 

derived from a Levi-Civita connection.5  

 

In string theory, the general term “D-brane” refers to an “object” upon which string endpoints lie. 

The letter D stands for the Dirichlet boundary conditions that the endpoint must satisfy on the 

brane.  A Dp-brane is an object with p spatial dimensions. The general spacetime dimension is  

p + 1, so 4-dimensional spacetime is considered to be a D3-brane.  Branes with D spatial 

dimensions are also called D-branes. D-branes are not necessarily hypersurfaces or of infinite 

extent, they can also be finite, closed surfaces. The additional spatial dimensions beyond the 

dimension of the brane are known as comprising the “bulk”.  It is interesting that Zaslow, in the 

context of category theory, simply defines branes as “boundary conditions”.6 

 
The strings of interest here carry Kalb-Ramond string charge. This charge can be viewed as a 

“current” flowing along the string since the string charge density is a vector which is tangent to 

the string.  For 4-dimensional spacetime, the action for the brane and the string will have a  

term, where  comes from the Maxwell field tensor.  Since  couples to  it must carry a 

string charge, but , so that the field Ek on the brane carries string charge. 

 

The field strength, , as defined above, is totally antisymmetric and invariant under the 

gauge transformations  

 

 

                (1.6) 

Here the arguments of Bµn are the string coordinates X(t ,s).  The “world sheet” of an open string 

is defined as the trajectory of the string in space-time with space-like coordinates Xµ.  On this 

world sheet there are two linearly independent tangent vectors given by ¶t Xµ and ¶s Xµ, where t 

parameterizes time and s parameterizes the distance along the string.  For bosonic strings, one 

uses the classical variable Xµ (t ,s) to describe the position of the string. 

 

The part of the action that couples the string to the Bµn field is given by 

F Bk
k

0
0

F k0 F k0 B k0

F Ek
k

0 =

Hnot

.B 2 2d K K= -no n o o n
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                (1.7) 

  is totally antisymmetric so that when this action is varied using Eq. (1.6) the result is 

𝛿𝑆L = −3𝑑𝜏𝑑𝜎(𝜕PΛ%	𝜕R𝑋% − 𝜕RΛ%	𝜕P𝑋%) = −3𝑑𝜏𝑑𝜎(𝜕P(Λ%	𝜕R𝑋%) − 𝜕R(Λ%	𝜕P𝑋%)). 

                (1.8) 

Now if L is set equal to zero at ,† the  term vanishes. Since the open string terminates on a 

D-brane, the coordinates  may be divided into those on the brane labeled Xm and those 

perpendicular to the brane labeled Xa.  Then integrating Eq. (1.8) on the brane with respect to s 

gives 

 

                (1.9) 
 
Because Dirichlet boundary conditions apply at both end points of the string, the term  

vanishes when evaluated at these points.  Given these boundary conditions, the string ends remain 

attached and perpendicular to the brane. 

 

For SB to be gauge invariant dSB must vanish. To make this happen one adds a term to the action 

coupling the ends of the string to the dark fields on the brane. That is, 

 

              (1.10) 
 
For this to work, one must impose the condition dAm = -Lm.  Doing so immediately results in 

dS = 0 so that gauge invariance is restored. Now, however, since dFmn = -dBmn neither field is 

independently gauge invariant. This means that the physical field strength must be redefined as 

 
† This type of requirement generally arises from Noether’s theorem, which states that every continuous symmetry of 
the Lagrangian gives rise to a conserved current 𝑗$(𝑥) which, when coupled with the equations of motion, implies 
that 𝜕$𝑗$(𝑥) = 0.  The conserved current means that there is a conserved charge 𝑄 = ∫ 𝑑"𝑥	𝑗Yℝ[ , provided 𝚥 → 0 
quickly enough as ⌊�⃗�⌋ → ∞. 

.S d d X X B2
1

B 2 2x vf= - ab
a

n
b

o
no#

fab

!3 2x

Xn

v r=
( ) | .S d X XB m

m
a

a2 2d x K K= +x x 0v=#

Xa
a2K x

v r=
( ) | .S S d A X XB m

m2x= + x 0v=#
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Fmn = Fmn + Bmn.  Then on the brane the gauge invariant generalization of the dark field Lagrangian 

density is . Expanding this gives 

 

              (1.11) 
The last term can be written as 

 

              (1.12) 
 

Since  couples to  it must carry a string charge, but  so, as mentioned earlier, the 

dark field on the brane carries string charge. 

 

The real question is how to interpret the second term of Eq. (1.10),  

 

 

              (1.13) 
 

It is generally maintained that these terms add plus and minus charge to the ends of the string; that 

is, as pointed out in Zwiebach's book, the ends of an open string "behave" as electric point charges.  

But the first term on the right-hand side of Eq. (1.12) can be interpreted as saying that not only 

does the electric field on the brane carry string charge, but the string in the “bulk” carries the 

electric field as well.  This is what the F0kB0k term in Eq. (1.12) means—the two fields are coupled: 

F0k couples to B0k and vice versa.  On the brane, the emergence of the electric field looks like a 

charge; in the bulk the electric field is confined to the string.  This is reminiscent of Wheeler's 

“charge without charge”.  For a discussion of this concept in the context of string theory, see 

Marsh.7   

 

While it is generally assumed that the charges on the endpoints of strings that terminate on a brane 

are Maxwell electric charges, this interpretation in terms of electromagnetism is not mandated.   

Kalb and Ramond did not assume that the charges and fields associated with string endpoints are 

F F4
1 mn

mn-

F F .B B F F F B4
1

4
1

4
1

2
1mn

mn
mn

mn
mn

mn
mn

mn- = - - -

. . .F B F B2
1 mn

mn
k

k
0

0- = - +

F k0 B k0 F Ek
k

0 =

0v=v r=
( ) | ( ) | .d A X X d A X Xm

m
m

m2 2x x-x x# #
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actually electromagnetic in nature, only that there is an “electromagnetic-type interaction between 

point charges located at the ends of strings” [emphasis added].  The electromagnetic interpretation 

will not be used here.  In what follows, the “apparent” charges of the previous paragraph will be 

called “dark charges” and their associated fields “dark fields”.  These fields will nevertheless be 

assumed to obey the Maxwell equations. 

 

 

In what follows it is important that the string ends have mass as well as carry dark charges.  In 

string theory, the interaction between strings is generally ignored because in quantum field theory 

causality requires that point like particles only interact when they overlap in space and time; i.e., 

there are no interactions at a distance such as the Coulomb interaction in electromagnetics.  But 

here the context is classical and the work of Kalb and Ramond becomes relevant.8  They use the 

gauge conditions 

𝜕$𝐵$% =
𝑔
𝑒 𝐴

%		where		𝜕%𝐴% = 0 

              (1.14) 

where g is a coupling constant having the dimensions of mass and e is a dimensionless coupling 

constant, along with the Lagrangian  

ℒ = i
ij𝐻$%&𝐻

$%& − i
kI𝜕$𝐴% − 𝜕%𝐴$J

F − i
kl
m
no
j𝐵$%𝐵$% − i

j	
m
n	𝐵

$%I𝜕$𝐴% − 𝜕%𝐴$J  

              (1.15) 

to find the equations of motion 

𝑔$%𝜕%𝜕$𝐴$ + l
p
q
o
j
𝐴$ = 0. 

              (1.16) 

This is the classical Klein-Gordon equation for a massive vector field with mass g/e.  If one now 

defines 𝔅$% = 𝐵$% + n
mI𝜕$𝐴% − 𝜕%𝐴$J, the Lagrangian can be written as 

 

ℒ = E
EF
𝐻$%&𝐻$%& − E

5
l
p
q
o
j
𝔅$%𝔅$%		𝑤ℎ𝑒𝑟𝑒		𝜕$𝔅$% = 0.		 

              (1.17) 

𝔅$% is then a massive pseudovector field.  Kalb and Ramond concisely summarize the above as 

follows:  The fields 𝐴$ and 𝐵$% , when taken individually, are associated with massless particles 
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which respectively mediate the long-range forces between open and closed strings. The combined 

effect of these fields produces a massive pseudovector interaction between open strings.    

 
 
2. D3-branes and Friedmann-Lemaître-Robinson-Walker cosmological models 

It has been shown by Lachièze-Rey9 that all FLRW pseudo-Riemannian manifolds can be 

embedded in a flat 5-dimensional Minkowski manifold with Lorentzian signature.  Every FLRW 

model is a 4-dimensional submanifold (hypersurface) in this 5-dimensional space.   

 

In what follows, the 3-dimensional spacelike hypersurface or brane will initially be chosen to be 

the manifold 𝕊", an oriented manifold that admits a spin structure enabling the existence of spinors.  

The bulk is a flat space that allows a torsion field.   

 

String theory has branes embedded in a bulk of higher dimension.  This bulk must be a torsion 

space since strings with Kalb-Ramond charge have a completely antisymmetric field intensity that 

is a torsion field.  Thus, the Kalb-Ramond field is a source of torsion.   Given the choice of 𝕊" with 

a spin structure for the brane, the question is then whether or not a Riemannian manifold can be 

embedded in a torsion space.  The question has been answered affirmatively by Romero, et al.10 

 

Trautman11 has written a paper on the Einstein-Cartan theory that is relevant to the completely 

antisymmetric nature of the field intensity of the Kalb-Ramond charge.  Note that there is no 

difference between the Einstein-Cartan theory and the Einstein theory when torsion vanishes. In 

general, Einstein-Cartan theory differs only slightly from General Relativity. The effects only 

become significant when the spin density squared is comparable to the mass density.  Non-zero 

spin density can only exist in the presence of a medium. Trautman notes that one does not need to 

introduce torsion to describe spinning matter.  Torsion theories can be reformulated as Riemannian 

theories with an additional torsion tensor that appears as a supplementary term of the energy-

momentum tensor in the Einstein field equations. 

 

Spin Structures 

Because of the real-world existence of spinors, the D3-brane of the FLRW universe of interest 

must admit a spin structure.  Whether or not this is possible depends on the first two Stiefel-
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Whitney classes.  Following Milnor and Stasheff,12 some relevant background follows.  A concise 

discussion of spinor bundles has been given by Marsh.13 

 

If 𝑆v
w, 𝑖 = 1, 2,			.		.		.  are p-simplices they can be taken as the free generators of an abelian group, 

and a p-chain can be defined as  

 

𝐶w = ∑ 𝑔v	𝑆v
w

v , 𝑔v ∈ 𝐺, 

                (2.1) 

where G is an abelian group.  Such p-chains also form a group Cp(K,G), K being a topological 

space.  It will be assumed here that K is a manifold.  The boundary operator applied to Cp(K,G) 

yields ¶:Cp(K,G)® Cp-1(K,G).  The kernel of ¶ is Zp(K,G) whose elements are p-cycles.  The group 

of bounding  p-cycles of K over G (boundaries) is then ¶:Cp+1(K,G)® Bp(K,G).  The homology 

classes are then defined as Hp(K,G) = Zp(K,G)/ Bp(K,G).  Similarly, using the coboundary operator 

¶* one can define the cohomology classes as Hp(K,G) = Zp(K,G)/ Bp(K,G).  Homology uses the 

global boundary operator ¶, and cohomology uses ¶*, or equivalently the exterior derivative d, 

which is a local operator.   

 

Hi(K,G) is then the ith cohomology group of K with coefficients in G.  For each vector bundle x 

there corresponds a sequence of cohomology classes  

𝑤v(𝜉) ∈ 𝐻v	(𝐾(𝜉), 𝑍/2),			𝑖 = 0, 1, 2,			.		.		. 

                  (2.2) 

called the Stiefel-Whitney classes of x.   Note that  

 

𝑤Y(𝜉) = 1 ∈ 𝐻Y	(𝐾(𝜉), 𝑍/2),	 

                (2.3) 

and 𝑤v(𝜉) = 0	for	𝑖 > 𝑛 if x  is an n-plane bundle. 

 

The Whitney product theorem requires a definition of the cup product: Given [𝜔] ∈ 𝐻w(𝐾,ℝ) and 

[𝑣] ∈ 𝐻�(𝐾,ℝ), [𝜔]⋃[𝑣] = [𝜔 ∧ 𝑣] a p+q form, which implies that [𝜔 ∧ 𝑣] ∈ 𝐻w��(𝐾,ℝ).  



 11 

Thus, ∪:𝐻w(𝐾,ℝ) × 𝐻�(𝐾,ℝ) → 	𝐻w��(𝐾,ℝ).  If x and h are vector bundles over the same base 

space, the Whitney product theorem is 

𝑤�(𝜉 ⊕ h) = ∑ 𝑤v(𝜉)⋃𝑤��v(h)�
v�Y . 

                (2.4) 

For example, 

 

 

𝑤E(𝜉 ⊕ h) = 𝑤E(h) + 𝑤E(𝜉) 

𝑤F(𝜉 ⊕ h) = 𝑤F(h) + 𝑤F(𝜉) + 𝑤E(𝜉)⋃𝑤E(h). 

                (2.5) 

When a manifold admits spinors it has a spin structure and is known as a spin manifold.  Denote 

the principal bundle of a closed, compact manifold K by PSO(n)(K).  K has the structure group SO(n) 

and sections of the tangent bundle are vector fields on K.  If K is a spin manifold, it has a “lifting” 

of its structure group SO(n) to the group Spin(n).  A lifting is a principal bundle map from the spin 

bundle to the frame bundle. Choosing such a lifting constitutes a choice of spin structure on K; i.e., 

𝑃��(�)(𝐾)
�v��v�p
�⎯⎯⎯�	𝑃�wv�(�)(𝐾). 

                (2.6) 

This also induces a bundle of spinors S(K) over K; sections of S(K) are spinors.   

 

While SO(n) is a connected group it is not simply connected.  For n ³ 3, the first homotopy group, 

p1(SO(n)), is isomorphic to 𝕫F.   The universal double cover of SO(n) is the spin group Spin(n).   

 

The lifting of the structure group SO(n) to the group Spin(n) requires that the first two Stiefel-

Whitney classes of the tangent bundle of K vanish: 𝑤E(𝐾) = 𝑤F(𝐾) = 0.  The vanishing of 

𝑤E(𝐾)implies that K is orientable and clockwise and anti-clockwise rotations can be distinguished, 

while the vanishing of 𝑤F(𝐾) makes the double covering of SO(n) by Spin(n) global. 

 

It should be noted that the existence of a spin structure on a manifold does not directly relate to 

the problem of including fermions in string theory.  That is addressed by superstring theory, which 
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introduces the idea of supersymmetry between bosons and fermions.  This, and subsequent 

developments in string theory, will play no role in what follows. 

 

The three-sphere 𝕊𝟑  

𝕊𝟑 is unique because of the 1904 Poincaré conjecture, which states that a compact, connected 

3-manifold is topologically equivalent (homeomorphic) to 𝕊𝟑 if it is simply connected.  The 

conjecture was proved by Grigori Perelman in 2006.  Because 𝕊𝟑 will play an important role in 

what follows, a brief introduction to the different ways of representing 𝕊𝟑 is given in this section. 

 

In general, 𝕊𝒏 is the one-point compactification of ℝ𝒏; i.e., 𝕊𝒏 = ℝ𝒏 ∪ {∞}.  The model of 𝕊𝟑 that 

will be used here is the identification of the boundary of two balls 𝐵		E" , 𝐵		F"  by a homeomorphism 

h of  𝜕𝐵		E" 	onto 𝜕𝐵		F" .  This is shown in Fig. 2.1.   

 

 

 
Figure 2.1.  The two-ball model of 𝕊𝟑 given by the union of the surface of two 3-balls given by 
 ℎ: 𝜕𝐵		E" → 𝜕𝐵		F"  so that 𝕊𝟑 = 𝐵		E" ∪¡ 𝐵		F" .    The point q is on the surface (boundary) of 𝐵		E"  and h(q) is on the 
surface of 𝐵		F" .   

 
If 𝒫 ⊂ 𝐵		F"  is set equal to ¥, as will later be the case, then 𝐵		F" = {𝒫¥} ∪ (ℝ𝟑 − Int	𝐵		E" ), where 

“Int” means interior.  {𝒫¥} ∪ (ℝ𝟑 − Int	𝐵		E" ) is a topological ball with center at infinity.  This is 

shown in Figs. 2.2(a) and 2.2(b) for a 2-dimensional projection.  The 1-point compactification of   

ℝ𝟑 (i.e., 𝕊𝟑) is then the union of this 𝐵		F"  with 𝒫 at infinity and 𝐵		E"  sewn together by the identity 

map of 𝜕𝐵		E"  onto 𝜕𝐵		F" .  This model of  𝕊𝟑 is equivalent to that shown in Fig. 2.1.14, 15  
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         (a)                       (b)  
  

Figure 2.2. (a) A 2-dimensional projection of the 3-ball 𝐵		E" ; (b) 3-Ball 𝐵		F"  when P ® ¥ .  The radius r¢ of 
𝐵		F"  is given by {𝑃¥} ∪ r¢.       
 

 
3. Kalb-Ramond charged string terminating in 𝕊𝟑 
 
The presence of dark charges within 𝕊𝟑 raises the question of whether or not a single-valued 

B field over 𝕊𝟑 can exist.  Here, the dark charges at the end of open strings will be isolated 

by additional boundary components. These affect the topology of the space.  The isolation 

of the charges associated with a Kalb-Ramond field by boundary components has also been 

used by Bowick, et al.16 

 

Strings that end on branes are generally discussed from the perspective of the bulk; often, for 

example, by a string terminating on a D2-brane.  The charged strings here terminate on 𝕊𝟑 

and from the perspective of the interior of 𝕊𝟑 the end charges appear as individual points that 

are isolated from the surrounding space by internal boundary components as shown in Fig. 

3.1.  The string itself is contained in the bulk within which 𝕊𝟑 is situated, while the field from 

the dark charges is contained in 𝕊𝟑and does not enter the bulk (Zwiebach, §15.3) itself, but—

as discussed in section 1—are constrained to the string.   
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Figure 3.1.  The two-ball model of 𝕊𝟑 given by 𝕊𝟑 = 𝐵		E" ∪¡ 𝐵		F"  with a Kalb-Ramond charged string with the 

dark charges at each end of opposite sign.  The dark charges are within their respective 3-balls.  These are 

surrounded by interior boundary components 𝐵𝑑	𝐵			E"  and 𝐵𝑑	𝐵			F"  that isolate the charges.  The radius of these 

interior boundary components is that of the charge; e.g., zero for a point charge.  𝑃 ⊂ 𝐵		F"  has been set at ¥.  

The topology near the charges located at pi is then locally equivalent to ℝ𝟑 − {𝑝v}.   

  
The Kalb-Ramond antisymmetric gauge field, or potential, Bµn looks like an electromagnetic 

potential with an additional index, and transforms under a gauge transformation in the same 

way.  Bµn  can be viewed as a 2-form B, so that H = dB.  The 3-form H is closed since dH = 0.  

The 3-form H will be exact (so that the potential Bµn is globally defined) if and only if the 

third homology group H3(𝕊𝟑) vanishes; i.e., if and only if the period  ∫ 𝐻 = 0¨𝕄 .  This is not 

the case for 𝕊𝟑 but is the case once there are boundary components isolating the dark charges 

at each end of the string.  In summary, for a single-valued potential B to exist, the third 

homology group of 𝕊𝟑 must vanish.  Appendix B elaborates on these issues using the example 

of 𝕊𝟐. 

 

4. Only one sign for dark charges in 𝕊𝟑. 

In what follows, it is necessary that only one sign of the dark charge at the ends of Kalb-Ramond 

strings appear within 𝕊𝟑.  That there exists at least one possible scenario for this to occur will be 

shown here.  It is based on the idea of cosmic strings and inflation in the early history of the 

universe. 
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As the Universe cooled since the Planck time there have been a series of spontaneous symmetry 

breaking phase transitions during which topological defects, such as cosmic strings,17 could have 

formed.  An example of a string-like topological defect is the magnetic flux line in a type II 

superconductor.  Such strings can be stable, an example of which is an infinite Abrikosov flux 

tube.18  In perturbative string theory, type II strings are global due to their coupling to the 

antisymmetric field Bµn.19  

 

The fundamental objects in string theory are not point-like, but rather 1-dimensional.  This is unlike 

quantum field theory where local interactions correspond to products of field operators at a point. 

This includes the creation and annihilation of particles.  Since strings, and in particular charged 

strings, are not point objects, how are they created? 

 

To resolve this creation enigma, it will be assumed here that one end of a charged string is created 

first and the other a very short time later.  It is also assumed that because the string charge has a 

vector character that the first end always has the same sign dark charge. It is further assumed that 

string creation occurs, in accord with grand unified theories (GUT), at the time of the symmetry 

breaking of 𝑆𝑈(5) = 𝑆𝑈(3)H⨂𝑆𝑈(2)¯⨂𝑈(1) at ~10-"±sec (the beginning of the standard model 

symmetry breaking period); i.e., during the period of the GUT phase transitions.  It is during one 

of these phase transitions that inflation, the exponential expansion of the universe, occurs.  

 

As inflation continues, the length of the strings increases exponentially so that a concentration of 

dark string charge of one sign is rapidly separated from a second concentration of dark string 

charge of the opposite charge.  The first concentration is taken in Fig. 3.1 to reside near infinity 

and the second concentration to be the dark charges in 𝕊𝟑.  

 

5. Evolution of the universe and topological change 

The problem with considering 𝕊𝟑 as a model for the very early universe, is that it is now known 

that the universe is not closed and is either flat or hyperbolic should the matter density be below 

the critical value even by a small amount.   In 1967, Geroch20 showed that changes in the topology 

of spacelike sections can occur if and only if the model is acausal.  That would seem to rule out 

𝕊𝟑.  However, Martin, et al.21 argue that for the FLRW universe quantum topological transitions 
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between curved 3-dimensional hypersurfaces are possible, but are ruled out for a flat hypersurface.  

This means that classically forbidden topological changes are possible in the quantum domain (see 

also the earlier work by De Lorenci, et al.22).  A discussion of these results requires that the 

Wheeler-De Witt equation and the concepts of superspace, midisuperspace, and minisuperspace 

be introduced.   

 

The solution to the Wheeler-De Witt equation is a functional—a real valued function on a space 

of functions; i.e. a function of functions—of positive definite metrics on a 3-manifold evaluated 

by a Feynman sum over kinematically possible histories.  Geroch has given it in the form  

Ψ( 𝒢) =" ´ 𝑒𝑥𝑝 µ−
𝑖
ℏ3𝑅

(−𝑔)
E
F𝑑5𝑥·

5-pq¸¹q�ºvq»

. 

                (5.1) 

The Wheeler-De Witt equation is obtained by canonical quantization, which could be inconsistent 

for constrained dynamical systems such as the Einstein gravitational field equations.  In addition, 

when the constraint 𝐻Ψ = 0 is imposed on the state vector Ψ, it is no longer a function of time.  

Peres23 has shown that the introduction of a dynamical time can result in a consistent canonical 

quantization.  De Lorenci, et al. introduce a dust field as a time variable to allow a time evolution 

of the quantum states and this is also used by Martin, et al. 

 

Superspace is the space of geometries for 3-manifolds that constitute space in the dynamical 

picture of general relativity known as geometrodynamics.  It can be thought of as the configuration 

space for general relativity.  The associated cotangent bundle can be defined so that it is the phase 

space for the Hamiltonian formulation.  Imposing symmetry restrictions on spacetime metrics 

leads to minisuperspace where the metrics depend on a finite number of parameters.  This turns 

out to be too restrictive so that one turns to midisuperspace, which results from imposing symmetry 

requirements on superspace such that the allowed metrics are parameterized by functions rather 

than numerical parameters.24 

 

Martin, et al. assume that the wave functionals obtained from the Wheeler-De Witt equation are 

of the form Ψ = 𝑒v�/ℏ, where S is the action, obtained by using the WKB method to solve the 

equations.   
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They begin with an FLRW-like metric given by 

𝑑𝑠F = −𝑁F(𝑡)𝑑𝑡F + 𝑎F(𝑡) À𝑑𝜒F + Â
sin	(𝑘(𝑡)E/F𝜒
(𝑘(𝑡)E/F Æ

F

𝑑ΩFÈ, 

                (5.2) 

where 𝑑ΩF = 𝑑θF + sinFθ	𝑑ϕF.  In this model, topological change occurs when 𝑘(𝑡) passes 

through zero.  This metric form can be arrived at by considering the usual FLRW metric, 

𝑑𝑠F = −𝑑𝑡F + 𝑎F(𝑡) Ë
𝑑𝑟F

1 − 𝑘𝑟F + 𝑟
F𝑑ΩFÌ. 

                (5.3) 

Consider now only the spatial part 𝑑𝑙F and let 𝜒 = ∫ Îº
(E-�ºj)i/j

, then 

 

𝑑𝑙F = 𝑎F(𝑡){𝑑𝜒F + 𝑓F(𝜒)𝑑ΩF}, 

where 

𝑓(𝜒) = Ð
sin𝜒											(𝑘 = 1)
𝜒																		(𝑘 = 0)
sinh𝜒							(𝑘 = −1).

 

                (5.4) 

Choosing 𝑘 = 1 and defining 𝜒 = 𝑘E/F�̅� puts the spatial part of the metric into the form 

𝑑𝑙F = 𝑘𝑎F(𝑡) À𝑑�̅�F + Ò
sinI𝑘E/F�̅�J

𝑘E/F Ó
F

𝑑ΩFÈ, 

                (5.5) 

and making the redefinitions 𝑘𝑎F(𝑡) → 𝑎(𝑡), �̅� → 𝜒, 𝑎𝑛𝑑	𝑘 → 𝑘(𝑡) results in the spatial part of 

the metric given in Eq. (5.2). 

 

One cannot simply allow 𝑘 → 𝑘(𝑡) in the FLRW metric, since the metric will then no longer 

represents a spatially homogeneous spacetime.  It is for this reason that De Lorenci, et al., in the 

paper preceding that by Martin, et al., were forced to introduce a midisuperspace and a metric 

having a non-vanishing shift function 𝑁(𝑡) as shown in Eq. (5.2).  This metric is used to determine 

a Green’s function that depends on the volume, y, proportional to a(t)3 of the space with 
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3-curvature R, and a dust field 𝜒(𝑡), which plays the role of time.  The semiclassical solution to 

the Wheeler-De Witt equation is then given by Ψ = Ψ(𝑦, 𝑅, 𝜒). 

 

The Green function 𝐺 = (𝑦�, 𝑅�, 𝜒�: yv, 𝑅v, 𝜒v) represents the probability amplitude for a 

topological transition when 𝑅� does not have the same sign as 𝑅v (i and f designate initial and final 

values).  Computation of this is not possible, so a semiclassical wave function Ψ = 𝑒v�/ℏ is 

assumed in order to find an approximation.  For topological change to occur, the phase S must 

have an imaginary part, allowing topological change to be interpreted as a quantum tunneling 

effect.   As discussed earlier, topological change cannot occur classically.  Writing down the 

explicit Green function found by Martin, et al. would add little to this introductory discussion. 

 

The implication of this is that complex metrics are needed for quantum mechanical changes in 

topology.  Martin, et al. use the metric 

 

𝑑𝑠F = −𝑁ÖF(𝑡)𝑑𝑡F + 𝑎F(𝑡){𝑑𝑧F + sinF𝑧	𝑑ΩF}. 

                (5.6) 

Giving Nc and z real values results in a positively curved spatial hypersurface; imaginary values 

give a negatively curved hypersurface.  Complexification of the metric changes a positively curved 

hypersurface to a negatively curved one without introducing a time dependent k.  In addition, 

topological change involving flat hypersurfaces are forbidden. 

 

Martin, et al. also found that topological change is improbable for short time intervals and increases 

as the time interval becomes longer.   With increasing time intervals, negative to positive 

topological changes are suppressed and positive to negative ones are enhanced.  They also found 

that topological changes between large volume spacelike hypersurfaces are very improbable.  

 

The universe is generally assumed to be flat, consistent with the LCDM model.  Some recent data, 

however (See Fig. 5.1), indicate that the universe may have a negative curvature.25  This is due to 

a hemispheric asymmetry in the cosmic microwave background radiation. See also Sawicki.26   

This possibility, combined with topological change a là Martin, et al., opens up the possibility of 

starting with a closed universe like 𝕊𝟑, which then evolves to a negatively curved universe. 
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Figure 5.1. Observed magnitude versus redshift plotted for well-measures distant Type Ia 
supernovae. [Adapted from S. Perlmutter, "Supernovae, Dark Energy, and the Accelerating 
Universe", Physics Today, April 2003.]  

 

6. A String Model for Dark Matter† 

The density profiles of dark matter halos are usually modeled as an approximate solution of the 

Lane-Emden equation.  Using the model proposed here for dark matter coupled with previous work 

discussed in this section—showing  that the approximate solution to the Lane-Emden equation can 

be an exact solution of the Einstein-Maxwell equations—provides a new insight into the possible 

nature of dark matter.  As above, dark charges and the fields associated with them are assumed to 

obey Maxwell’s equations. 

 

The standard model of LCDM has as its principal matter component cold dark matter, which only 

interacts gravitationally, of an unknown nature.  As discussed in the Introduction, relatively recent 

work on colliding galaxy clusters confirm this supposition27, 28.   

 

In the case of the rotation curves of galaxies, the density distribution of dark matter is generally 

assumed to be spherical and to have an isothermal equation of state; i.e., a polytropic equation of 

state ( ) where g = 1.  The hydrostatic balance equation may then be integrated to yield  

𝜌 = 𝜌Y	𝑒𝑥𝑝(−Φ/𝐾), 

 
† Much of this section, in the context of electric charge, originally appeared in: G. E. Marsh, “Isothermal spheres and 
charged dust”, J. Phys. Astron. 2, (2013). 
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          (6.1) 

where F is the gravitational potential.  F/K must then be a solution of the isothermal Lane-Emden 

equation.  Non-singular solutions can be obtained by imposing appropriate boundary conditions, 

such as requiring that the solution and its first derivative vanish at the origin.  The result is an 

exponential solution for the density of the form 

𝜌(𝑟) =
𝜌Y	

𝑒𝑥𝑝 lΦ𝐾o
. 

            (6.2) 

The isothermal Lane-Emden equation cannot be solved analytically and consequently  F/K is 

expanded in a power series.  The requirement that the first derivative vanish at the origin limits the 

expansion to even powers starting with (F/K)2.  Expanding the exponential in the denominator of 

Eq. (6.2), keeping only the first two terms, and using the coefficient given by Chandrasekhar29 for 

the leading (F/K)2 term results in the often used expression for the dark matter density, 

𝜌(𝑟) = 𝜌Y	
𝑟Y	F

𝑟Y	F + 𝑟F
 

                                                                                                                       (6.3)  

where 𝑟Y = 6𝐾/4𝜋𝐺𝜌Y	.  It will be shown that the right-hand side of this approximate expression 

corresponds to an exact solution of the coupled Einstein-Maxwell equations for dust composed of 

charged dark matter.  Note that if r0 is to be identified with the King radius, the numerical factor 

of 6 should be replaced by 9. 

 

7. Dark charged dust 

The term “charge” in this section is meant to designate dark charge rather than electromagnetic 

charge.  The form of the metric for charged dust was introduced by Majumdar 30 and Papapetrou31.  

It is spherically symmetric and static, and can be motivated by considering the Reissner-Nordström 

metric 

𝑑𝑠F = Ò1 −
2𝑚
𝑟 +

𝑞F

𝑟FÓ𝑑𝑡
F − Ò1 −

2𝑚
𝑟 +

𝑞F

𝑟FÓ
-E

𝑑𝑟F − 𝑟F𝑑ΩF. 

                                   (7.1) 
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Assume the extreme form of this metric where |q| = m, and introduce the isotropic coordinates  

�̅� = 𝑟 − 𝑚.  Doing so results in the metric 

 

𝑑𝑠F = 𝑓F	𝑑𝑡F − 𝑓F[𝑑𝑟F + 𝑟F𝑑ΩF], 

           (7.2) 

where 𝑓 = (1 +𝑚/𝑟)-E.   Henceforth the bar above the r will be dropped with the understanding 

that isotropic coordinates are used in what follows.  

 

Using Newtonian mechanics and classical electrostatics, it is straightforward to show that a system 

of charged particles of mass mi and charge qi, where all of the particles have the same sign charge, 

will be in static equilibrium if |qi| = G1/2mi.  For a continuous distribution of mass r and charge s, 

there will be equilibrium everywhere if |s| = G1/2r.  This is what is known as charged dust.  It has 

a general relativistic analog that was discovered by Papapetrou and Majumdar.  Although spatial 

symmetry is not required, spherical symmetry will be assumed here. 

 

Note, however, that the extremal condition q = G1/2 m means that if the dark charge q is chosen to 

be the minimal charge equivalent to one electron or 10-19 coulomb, then there is a minimal mass 

of ~3.6 ́  10-9 kilogram giving a charge to mass ratio of 2.7 ´ 10-11.  This minimal mass is unusual 

in that it is very close in value to the reduced Plank mass of Ý ℏÖ
Þßà

= 4.3 × 10-á  kilogram (much 

greater than the supersymmetric extension of the standard model predicting WIMPs having a mass 

of ~100 Gev/c2). 

 

The equilibrium of charged dust in general relativity has been treated extensively by W.B. Bonnor 

and others since the early 1960s.  It is his paper on the equilibrium of a charged sphere32 that forms 

the embarkation point for the work here33.  The Einstein and Maxwell field equations applied to 

the metric of Eq. (7.2) show that the Newtonian condition for equilibrium given above must also 

hold in general relativity.  In what follows, the charge will be chosen to be positive. 

 

Bonnor obtained the equation that relates the general form of f to the density, 
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𝑓𝑓ââ − 2𝑓âF +
2
𝑟 𝑓𝑓

â − 4𝜋𝜌 = 0. 

                                                                                             (7.3) 

Unfortunately, this equation is completely intractable unless r = 0, and as put by Lemos and 

Zanchin, “It is not a method for solving the differential equation of the Majundar-Papapetrou 

problem, it is an art of correct guessing.” 34   In other words, one is reduced to guessing a form for 

the function f and hoping that the equation yields a physically meaningful density distribution.   

 

The problem addressed by Bonnor was to find the density distribution of charged dust within a 

finite sphere of radius a that would match to the vacuum Reissner-Nordström solution at the 

boundary.  This was successfully achieved using the following expression for f 

 

𝑓(𝑟) = (𝑎" + 𝑚𝑟F)E/F(𝑎 + 𝑚)-"/F. 

                                                                                                           (7.4) 

In Eq. (7.4), m is the mass of the charged dust contained within r = a.  The density was found to 

be 

𝜌 =
3𝑚
4𝜋𝑎"

(1 + 𝑚/𝑎)-" Ò1 +
𝑚𝑟F

𝑎" Ó
-E

. 

                                                                                            (7.5)
 

The question addressed here is whether it is possible to find a function f(r) that would result in a 

radially unlimited density distribution matching that given in Eq. (6.3) for dark matter.  Indeed, 

one can.  Substitution of 

 

𝑓(𝑟) = Ý5
"
	𝜋𝜌Y	(𝑎F + 𝑟F)E/F 

                                                                                                         (7.6) 

into Eq (7.3) yields 

 

𝜌(𝑟) = 𝜌Y
𝑎F

𝑎F + 𝑟F	, 
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                                                                                                                    (7.7) 

where a is now a free constant.  This has the same form as Eq. (6.3) except that now the equality 

is exact and r(r) is derived from a solution of the Einstein-Maxwell field equations.  This is 

somewhat surprising given that the origins of Eq. (6.3) and Eqs. (7.6) and (7.7) are so different.  

 

Both the isothermal sphere and the corresponding solution given here to the Einstein-Maxwell 

field equations are unrealistic since the total mass, proportional to  at large radii, is infinite.  If 

necessary, it is quite possible that other models can be obtained by modifying these solutions, but 

galaxies do not really exist in total isolation but rather in galactic clusters so this solution may be 

adequate. 

 

 

Summary 

Some concepts from string theory and quantum topological change in the early universe were used 

to formulate a new model for dark matter.  The end points of open, charged Kalb-Ramond strings 

are associated with charges, which have been designated here as dark charges where they and their 

fields obey the Maxwell field equations.  This is in keeping with Kalb and Ramond who did not 

assume that the charges and fields associated with string endpoints are actually electromagnetic in 

nature, but only that there is an electromagnetic-type interaction between these point charges. 

 

An argument was then given for the presence of dark charges of only one sign appearing at the 

end of Kalb-Ramond strings in 𝕊𝟑.  It was based on the idea of cosmic strings and inflation in the 

early history of the universe.  As the Universe cooled since the Planck time there were a series of 

spontaneous symmetry breaking phase transitions during which topological defects, such as 

cosmic strings, could have formed.   

 

Since the fundamental objects in string theory—unlike quantum field theory where local 

interactions correspond to products of field operators at a point—are not point-like, but rather 1-

dimensional, one must come up with a scenario of how they might be created.  To do this, it was 

assumed that in the early history of the universe one end of a charged string is created first and the 

other a very short time later.  It was also assumed that because string charge has a vector character 
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the first end created always has the same sign dark charge. It was then further assumed that string 

creation occurs, in accordance with grand unified theories (GUT), at the time of the symmetry 

breaking of 𝑆𝑈(5) = 𝑆𝑈(3)H⨂𝑆𝑈(2)¯⨂𝑈(1) at ~10-"±sec (the beginning of the standard model 

symmetry breaking period); i.e., during the period of the GUT phase transitions.  It is during one 

of these phase transitions that inflation, the exponential expansion of the universe, begins.  

 

Inflation led to the length of the strings increasing exponentially so that a separation of dark string 

charges occurred.   As a consequence, only dark charges of one sign appear in the interior of 𝕊𝟑; 

the other charges of opposite sign being placed at infinity.  It was shown that paired isolating 

boundary components allow the existence of a single valued Kalb-Ramond potential. 

 

The possibility was then discussed that quantum tunneling could allow 𝕊𝟑 to transition to a 

negatively curved manifold consistent with what is known of the universe’s topology today. 

 

Using the model proposed here for dark matter coupled with previous work discussed in the last 

section provides a new insight into the possible nature of dark matter. 

 

Acknowledgement 

I am very grateful to Adam Marsh for his careful reviews of several versions of this paper and for 

his many helpful suggestions and corrections.  The author is of course solely responsible for any 

remaining errors. 

 

  



 25 

APPENDICES 
 

A. Torsion in the bulk and in 𝕊𝟑 

As mentioned in Section 1, the field strength, 𝐻$%& = 𝜕$𝐵%& + 𝜕%𝐵&$ + 𝜕&𝐵$% from string theory 

is a totally antisymmetric tensor corresponding to a torsion field.  This torsion field strength is 

associated with a string within the bulk, which terminates on a brane, here 𝕊𝟑.  If  𝕊𝟑 is to be a 

hypersurface in a FLRW pseudo-Riemannian manifold there are compatibility constraints on the 

form of the torsion in 𝕊𝟑.  It is interesting that there is experimental evidence from the preferred 

handedness of spiral galaxies35,36  that the space we live in today may have a torsion field. 

 

The FLRW constrained form of the torsion in the bulk can be written as 

𝑇=R% =
E
±
𝑊$𝜀$=R%, 

              (A.1) 

where 𝑊$ is a pseudo-vector known as the torsion axial-vector.  This means that completely 

antisymmetric three index tensors are equivalent to pseudo-vectors.  If a = 0, and the other indices 

are restricted to spatial coordinates, Eq. (A.1) can be written as 

𝑇Y�� = E
±
	𝜀��¹𝑊¹. 

               (A.2) 

There is an electromagnetic analogy for the Kalb-Raymon charge and field in string theory.  There, 

the field strength BH dual to the torsion field 𝐻$%& is defined by 𝜀��¹(𝐵.)¹ = 𝐻Y��, where Latin 

indices take the values 1,2,3 and 𝜀��¹ is totally antisymmetric and satisfies 𝜀EF" = 1.  Note that 

𝐻vå� = 0, 𝐻Yå� ≠ 0, and H is time independent (See the book by Zwiebach for a discussion of this 

ansatz and the review paper by Hammond37).  The analogy with Maxwell’s equations is 

𝜕𝐻Y��

𝜕𝑥� = 𝑗Y�				𝑎𝑛𝑑			∇èè⃗ × 𝐵è⃗ . = 𝚥Y. 

               (A.3) 

𝑗Y� are the charge densities of the string that correspond to the components of a spatial vector that 

is tangent to the string.  This means that the Kalb-Ramond charge density is a vector 𝚥Y with 

components 𝑗Y�.  The divergence of 𝚥Y vanishes.  A comparison of Eqs. (A.2) and the definition 
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of  𝐵è⃗ . discussed in the paragraph just above Eq. (A.3) shows that Zwiebach's field strength 𝐵è⃗ .is 

equivalent to 𝑊èèè⃗  and 𝑇Y�� to 𝐻Y��.   

 

 

B. Single-valued Potentials: Homology, Cohomology, and Cuts 

 

This Appendix uses the manifold X = 𝕊𝟐 as an example in order to help clarify some of the ideas 

involved in Section 3.  Figure A1 shows a charged Kalb-Ramond string terminating on a 2-sphere. 

 

 
Figure A1. A charged Kalb-Ramond string terminating on a 2-sphere with its dark end charges 
isolated by boundary components.  The closed curve C1 is homologous to zero (because it lies on a 
2-sphere), but C2 is not. 

 

In Fig. A1, the bulk is 3-space.  Without the string, the homology is given by: 𝐻Y(𝑋) ≃ ℤ; 

 𝐻E(𝑋) = 0; 𝐻F(𝑋) ≃ ℤ; and 𝐻"(𝑋) = 0.  With the string terminating on the 2-sphere, this is no 

longer true since 𝐻E(𝑋) ≠ 0 because of the obstructions of the boundaries introduced by the 

charges.  A very readable introduction to homology groups can be found in the book by Fraleigh,38 

and a more technical introduction to de Rham cohomology in the book by Warner.39 
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Figure A2 shows how the contractibility of C2 changes with the introduction of a cut (tubular 

neighborhood) connecting the boundary elements isolating the charges.  With the introduction of 

the cut, 𝐻E(𝑋) = 0. 

 

 
Figure A2.  Same as Fig. A1 with the introduction of a cut connecting the two boundary elements 
isolating the dark charges.  The interior of the tubular neighborhood of the cut is in the bulk and the 
string could just as well now be drawn so as to be contained in this neighborhood. The cut can be 
shortened vertically so that the positive dark charge and its isolating boundary are contained within 
C2 so that C2 is also homologous to zero since, as was already the case for C1, C2 is now contractible 
by going around the 2-sphere. 

 

Some Background on Forms, de Rham's Theorems, Homology and Cohomology. 

A closed form is one where 𝑑𝜔 = 0; an exact form is one for which 𝜔 = 𝑑𝜂; an exact form is also 

a closed form since 𝑑𝜔 = 𝑑(𝑑𝜂) = 0.  Here, d is the exterior derivative.  de Rham's first theorem 

states that a 2-form 𝑑𝜔 = 0 is exact if and only if all the periods of 𝑑𝜔 vanish.  What this means 

is that if 𝕄 is a manifold and ∑ 𝑎vv 𝑧v = 𝜕𝕄, where the 𝑧v are boundary components, then 

∑ 𝑎vv ∫ 𝑑𝜔ìí
= 0.  The integral ∫ 𝑑𝜔ìí

 for each 2-cycle 𝑧v on 𝕄 is called a period.   

 

A factor group 𝐺/𝐻 = {𝐻𝑥|𝑥 ∈ 𝐺} is a partition of G, as is 𝐺\𝐻 = {𝑥𝐻|𝑥 ∈ 𝐺}.  Hx is the right 

quotient set and xH the left.  H is normal in G if Hx = xH for all 𝑥 ∈ 𝐺; then 𝐺/𝐻 = 𝐺\𝐻 and 𝐺/𝐻 

is a group.  Let f be a mapping from a group G to a group Q.  The kernel of the mapping is the 

subgroup of elements in G mapped on to the identity of Q.  That is, 𝐾𝑒𝑟∅ = {𝑔 ∈ 𝐺|𝜙𝑔 = 1}; the 

image of G in Q is 𝐼𝑚∅ = {𝜙𝑔|𝑔 ∈ 𝐺}. 
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The de Rham cohomology group 𝐻Îqó
w = {𝑟𝑒𝑎𝑙	𝑣𝑒𝑐𝑡𝑜𝑟	𝑠𝑝𝑎𝑐𝑒	𝑜𝑓	𝑐𝑙𝑜𝑠𝑒𝑑	𝑝 − 𝑓𝑜𝑟𝑚𝑠}/

{𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒	𝑜𝑓	𝑒𝑥𝑎𝑐𝑡	𝑓𝑜𝑟𝑚𝑠}; that is,  

  

𝐻Îqó
w (𝕄, 𝑑) = 	𝑍w(𝕄, 𝑑)/𝐵w(𝕄, 𝑑) = 𝑝�¡	deRham	cohomology	group 

                                                                                                                    (B1) 

Note that 𝑑F = 0	 ⇒ 𝐵w ⊂ 𝑍w.  The dimension of 𝐻wis the pth Betti number, which is finite for 

compact 𝕄.  If 𝕄 is a smooth manifold, 𝐻E(𝕄, 𝑑) measures the number of holes in 𝕄 and 

𝐻Y(𝕄, 𝑑) measures the number of connected components of 𝕄.  𝐻�(𝕄, 𝑑) derives from the 

sequence of maps 

 

.		.		. 𝑑⟶		𝐶$(𝕄, Λ�-E(𝕄))		 𝑑⟶		𝐶$(𝕄, Λ�(𝕄))		 𝑑⟶			𝐶$(𝕄, Λ��E(𝕄))		 𝑑⟶		.		.		.	 

                                                                                                                    (B2) 

In this equation, 𝐶$ means that all partial differential equations of all orders exist and are 

continuous.  Λw(𝕄) is the space of p-vectors on 𝕄, an n-dimensional vector space over ℝ. Note 

that 𝐻w(ℝ�) = 0	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑝 ≥ 1	𝑎𝑛𝑑	𝑛 ≥ 1. 

 

The lth homology group of 𝕄 with coefficients in the arbitrary abelian group G is given by 

𝐻�(𝕄,G) = 𝑍�(𝕄,G)/𝐵�(𝕄,G) 

                                                                                                                    (B3) 

For the homology groups the sequence of maps is 

.		.		. 𝜕⟵		𝐶�-E(𝕄,ℝ)		 𝜕⟵		𝐶�	(𝕄,ℝ)	 𝜕⟵			𝐶��E(𝕄,ℝ)		 𝜕⟵		.		.		.	 

                                                                                                                    (B4) 

Each 𝐶� is an abelian group and 𝜕F = 0.   

 

Consider a manifold X containing an oriented 2-simplex (a triangle with oriented interior) with 

vertices v1, v2, v3. The boundary map 𝜕 acting on this 2-simplex has as its image an oriented 

boundary (triangle without its interior).  This example gives: 

𝑍�(𝑋,G) = {c ∈ 𝐶�	(𝑋, 𝐺)| ∂c = 0}			(cycles) 
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𝐵�(𝑋,G) = {∂c|c ∈ 𝐶��E	(𝑋, 𝐺)}			(boundaries)	 

𝐻�(𝑋,G) = 	𝑍�(𝑋,G)/𝐵�(𝑋,G)			(l*+homology	group	of	X	with	coefficients	in	G) 

                                                                                                                    (B5) 

There is a linear map of the de Rham cohomology to the dual space homology given by 

 𝐻w(𝕄)⟶ 𝐻w(𝕄,ℝ)⋆ and defined by 

{𝛼}({𝑧}) = 3 𝛼.
ì

 

                                                                                                                    (B6) 

In Eq. B6, a is a closed p-form representing the de Rham cohomology class{ a }; {z} is a p-cycle 

representing the real differentiable singular homology class{z}; and the right hand side of the 

equation gives real numbers determined by integrals of a differential form over differentiable 

cycles called the periods of the differential form.  The de Rham theorem states that ⋆ is an 

isomorphism. 

 

• Stokes' theorem states that the periods of an exact form are zero. 

• The above isomorphism ⋆ is injective so that the converse will hold: if a closed form has all of 

its periods equal to zero, then it is an exact form. 

 

Physically, this means that a global potential can be defined. 
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