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Self-Dual Gauge-Field Equations from a Differential Form Point of View

Gerald E. Marsh

Abstract

1be utility of differential f01'm'ifor understanding the origin of the self-dual gauge-field

equations is illustrated by deriving the systems of linear partial differential equations

introduced by Belavin and zakharov and used in a different form by Ueno and

Nakamura. 1be integrability condition for these systems of equations is then used to

show their relation to a generalized form of the Ernst equation.
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1. INfRODUCTION

Beginning with the suggestive form of the Dirac equation for massless

tw<xomponent fermions

As can be readily verified, the integrability condition [Ll, Lz] 'P = 0 yields

the anti-self-duality relation.

Veno and Nakamura, (Z) on the other hand, use the system

(D4 + in . (J') u = 0, (la)
(4)

(D4 - i D • (J') v = 0, (lb) where here

Belavin and Zakharov( l) derived a system of linear partial differential equa­

tions, the "compatibility condition" for which is equivalent to the nonlinear

self-duality relation for the Yang-Mills fields. Here, Dj = OJ + Aj, and the

Aj are matrices obtained from the gauge potentials and generators of the

associated Lie algebra. They noted that these equations correspond to the

self-duality and anti-self-duality relations Fllv = ±*FIlV, respectively, and

then looked for solutions of the form

Dz = -oz + ~-10.y, Az = (o.yj)r1,

and Y(~) is an n x n matrix function of (y, y, z, i, ~),~being

a complex "spectral" parameter. runctionJ(y, y, z, i) = Y(O) is a

GL (n, C) matrix function satisfying

v = (~) 'P(A, x),
(2)

(5)

where 'P (A., x) is a 2 x 2 matrix function belonging to the "isotopic

space."

Substitution of Eq. (2) into Eq. (lb) yields the pair of linear partial

differential equations

L1'P = [A(Dz - iDl) + (D4 + i D3) ] 'P = 0

Lz'P = [A(D4 - i D3) - (Dz + i Dd ] 'P = O.
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The latter equation represents the self-duality relation in a form introduced

by Brihaye et ai. (3)

The principal purpose of this paper is to illustrate how the use of differen­

tial forms can clarify the origin of the anti-self-dual gauge-field equations. It

is also explicitly shown that the form of these equations used by Belavin and

Zakharov and Veno and Nakamura correspond to different representations of

the self-duality relations. While this work is essentially didactical in nature,
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since XI . X2 = 0 and xl = xi = 1.

In terms of the null coordinates Y, ji, z, i the exterior derivative of
CO is written as

the use of differential forms allows the systems of linear partial differential

equations used by these authors to be derived in a unified way.

The close connection, at least from a formal mathematical point of view,

between static, axially symmetric gauge fields and the stationary, axially

symmetric Einstein field equations is demonstrated in Sec. 5 by reducing the

self-duality relation [Eq. (5)] to a generalized form of the Ernst equation. (4)

The usual form of the Ernst equation then results from restricting consid­

eration to the group SU(2).

Before entering into the principal subject matter of this paper, some gen­

eral comments on differential forms and complex spaces may prove useful.

Let en denote the complex vector space of all n tuples Z = (ZI, •.• ,zn)

of complex numbers where Zj = Xj + iyj and Xj, Yj ER The mapping

a: en --> R2n defined by a(zl, ••• ,zn) = (Xl, YI, ..• , Xn, Yn)

can be used to identify en with R2n. In general, eve!)' n-dimensional

complex manifold can be thought of as an orientable real analytic 2n ­
dimensional manifold.

Let n = 4 so that the complex space of interest is e4. Also, let XI , X2 ,

x3, X4 be complex orthonormal coordinates in e4 , such that xl = 1 and

Xi . Xj = 0 for i i j. Then the coordinates Y , y, z, i introduced in Sec. 2

are null coordinates. Consider, for example, Y = (1/.J2) (Xl + i:x2) :

co . (a r~) = (co /\ a) . ~.

(a /\ co) . cr = [( _1)p(n-p) a r cr] . co. (10)

(8)

(ll)*a = (-1)Pa r cr.

A /\ Il = (*1.. 'Il)cr,

*1.. such that

The duality operator has important geometrical consequences in e4 , where

**a = a. If the * operator is applied to 2-forms, the two eigenspaces

corresponding to the eigenvalues +1 and -1 of the * operator give rise to

the concept of self-duality and anti-self-duality.

Comparing this result with the definition of the duality operator and re­

stricting consideration to e4 leads to the identification

where cr is the n -dimensional volume element of the space.

The duality operator can also be defined in terms of step products with

the volume elements cr. (The Illinois Institute of Technologyconventions are

used for the step products; see Ref. 5.) The step product a r ~ between a

p -form a and a q -form ~, where q >p, is defined as that (q - p ) -form
co such that

Replacing the q -form ~ with the n -form volume element cr and using the

general relation a /\ ~= (-1)pq ~ /\ a results in

(6)2 1 (2' 2)
Y = 2" XI + 21 XI . X2 - X2 = 0,

where cr = (Xl, X2, X3, X4) and E = diag (1, 1, 1, 1). Under a Unital)'

transformation cr = cr' U ,

(13)

(14)

(15)

(12)

G: = U E UI.

If U has the form

(1

-i0

:}U=_1_

j0

.J2

01-I
0

1i

G will be given by

G = (l

10

D
0

0

0

0

0

1

2. A BASIS FOR SELF-DUAL AND ANTI-SELF-DUAL

TWO-FORMS

In the following we will be concerned with 2-forms and would like to

.have a basis for such forms in terms of the null coordinates y ,y ,z, i.The
latter can be introduced as follows:let Xi be complex rectangular coordinates
in e4. The metric can then be written as

If CO is ap -form, d co is a (p + 1) -form. While the correspondence between

en and R2n can be used to introduce two additional operators a and a
such that d = a + a, no use will be made of this decomposition in the

following.

There is a close connection between e4 and the cornplexification eM

of Minkowskispace M. eM is the real eight-dimensional space obtained by

allowing the coordinates t, x, Y, Z of M to be complex numbers. If M has

signature -2, the metric in eM is the holomorphic or complex-analytic

extension (rather than the Hermitian extension) of the Minkowski space

metric; that is, it is still given by dt2 - dx2 - dy2 - dz2. The complex

space e4 is isometric with that subspace of eM given by restricting t to

real values and x, y, Z to pure imaginary values. Null cones and lines
are therefore well defined in e4 since M and R4 are contained in e4.

Null vectors and hypersurfaces are introduced as generalizations of their real

counterparts.

Throughout the following sections use is made of various forms of the

duality or Hodge star operator *. While this operator is usually defined for

real differential forms, the concept is readily extended to complex differential

forms. The * operator maps p forms onto (n - p ) -forms and has this

property: the subspace of *co is orthogonal to the subspace of co. Although

the * operator is defined locally, it is independent of local coordinates but

does depend on the existence of an inner product and on the orientation of

the space.

Letn be the dimension of the space, A ap -form and Il an (n -p) -form.

Then for a suitably defined inner product, there is a unique (n - p ) -form
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and since U is unitary,

X . - 1 ~ _ 1 ( . . ) (18)
. - v'2 X (J~ - v'2 I x4 (Jo + x (J,

(24)

dydi
dydz

dydy -dzdz

(anti-self-dual)

dydz
dydi

dydy +dzdi

(self-dual)

3. TIlE GAUGE POTENTIAL AS A CONNECTION FORM

A gauge potential may be interpreted as a connection with an associated

covariant derivative operator. Such an interpretation has been discussed by

many authors and will therefore not be treated in detail here. (7)

Consider a four-dimensional complex, analytic and locally Euclidean

Riemannian space M. At each point of M attach an n -dimensional complex

vector space vn . Let \{I = (\{I I, \{I2' ••• ,%.) be a basis for vn and

dual 2-forms. (6) Noting that the diagonal elements in both cases differ by

an overall sign, a basis for self-dual and anti-self-dual 2-forms is given by

(17)
y : = Jz (XI + &x2) ;

_ 1 ( ')
y : = v'2 XI - &X2 ;

with (Jo the 2 x 2 identity matrix and (Ji the Pauli spin matrices in the

representation

Note that y is not the complex conjugate of y since the Xi are complex.

These coordinates arise naturally when considering the 2 x 2 matrix

representation of a point in C4 given by

0' = (Jut = Jz (XI +&x2, XI -&x2, x3 +&x4, x3 -&x4). (16)

The null coordinates y, y, z, i are then defined by

be a basis for the dual space vn *. In a new basis \{I' is related to \{I by

the transformation \{I' = Xg-, where for the sake of generality it is assumed

thatO) g £ GL (n, C).

For a given gauge potential A~ (x) , define the connection form A by

( 0 1) ( 0 -i ) ( 1 0)(JI = 1 0 ,(J2 = i 0 ,(J3 = 0 -1 .

Writing out the expression for X, we obtain in terms of Eqs. (17)

X = _1_ (X3 + &x4 XI -&x2 ) = (z y) . (19)v'2 XI + &x2 -(X3 -&x4) y-i A =A~(x) Aadx~, (25)

Let xt = Xl (this becomes the usual Hermitian conjugate in real space): where the Aa are the generators of the gauge group. Then for a gauge

potential to be interpreted as a connection form means that

X ---> xt then corresponds to X4 ---> -X4'

The matrices X and Xt can be used to define the I-form matrices dX

and dXt. The I-form elements of these matrices are such that the only

nonzero step products( 5) are

or, alternatively, d\{l = -A \{I. The transformation property of the connection

form A can be readily found from \{I' = Xg-,

d\{l' = (d~g + \{Idg ,,; ~Ag + \{Idg = \{I(dg +Ag)

= \{I'g-I (dg +Ag) = \{I'AI, (27)

xt = (i y);y -z (20)
d\{l = \{IA (26)

dy r dy = dz r di = 1. (21) where

dXdXt = (dZdi -dydy 2 dZdY) (22), 2 dydi dydy - dzdi

The exterior products between dX and dXt (here and in the following

the exterior or wedge product symbol /\ is omitted) can be used to define

a basis for self-dual and anti-self-dual 2-forms:

dXtdX = (-(dZdi + dydy) 2 didy ).2 dydz dydy + dzdi
(23)

constitutes a gauge transformation.

The curvature 2-form F is readily obtained from Eq. (26)

d2\{1 = (d~A + \{Id4 = \{1M + \{Id4 = \{I(d4 +M)

F:= d4 +M.

(28)

(29)

Here, the duality operation is defined as *(0 = -(0 r dydy dzdi, where

(0 is one of the above two-form matrix elements, and dxl dx2 dx3 dx4 =
-dydYdzdi. It can be seen that the elements of dXdXt form a basis for

anti -self-dual two-forms while the elements of dXtdX form a basis for self-

4. TIlE SELF-DUALIlY EQUATIONS

Ward, (8) drawing on twistor theory, (9) introduced the use of anti -self­

dual planes in C4 to generate solutions to the Yang-Mills field equations. If

!£. and ~ are two orthogonal tangent vectors to a plane in C4, and if the

408
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bivector ~ 1\ ~ is anti-self-dual, then it defines a complex two-plane termed

a ~ plane in twistor theory, while if it is self-dual it defines an ex. plane.

Transformations between ex. and ~ planes can be effected by application of

an element of 0 ( 4, C) with determinant(lO) equal to -1.
Ward pointed out the reason for defining ~ planes as follows: a self-dual

gauge potential AI!' may be interpreted as a connection with a covariant

derivative operator DI! = 0l! +AI!' Parallel propagation of a vector 'P in the

direction v I! is then given by

vI!DI!'P=O. (30)

combine to yield

1td = dy Oy + dzoz,

ftd = dy OJ + dioz,

since

8dy = -di;
8dz =dy;

81td = -dioy + dyoz,

8ftd = -dzoj + dyoz,

8dy = -dz;

8di = dy.

Similarly, for the dydi element of the self-dual basis of Eq. (24) we

choose

In the representations 1tA = A, ftA = 0 and itA = A, 1tA = 0 these

become, respectively,

Note that 1td keeps y and i fixed while ftd keeps y and z fixed.

In finding the self-dual components of F = d4 + M it is important

to remember that since the exterior product symbol 1\ is omitted between

forms, d4 means d 1\ A . Anticipating that in a gauge where either ftA = A

and 1tA = 0, or 1tA = A and itA = 0, only some of the resulting equations

are independent, we will not write out all the self-dual components of F,

but rather illustrate the procedure, since the algebra is straightforward.

Consider the element dydz of the self-dual basis given in Eq. (24). Two of

the four possible equations that result from setting the self-dual components

of F equal to zero are

(ftd)(ftA) + (ftA)(ftA) = 0

(34)

(33a)

(33b)

(32a)

ftA =A, 1tA = 0

ftd4 +M = 0

(81td)A = 0

(81td)( itA) + (81tA)( itA) = O.

(1td) (1tA) + (1tA) (1tA) = 0

(8ftd) (1tA) + (8ftA) (1tA) = O.

1tA =A, ftA = 0

(1td)A +M = 0

(8ftd)A =0

If propagation is constrained to lie in a ~ plane having v I! as a tangent

vector, this propagation law is integrable (the vector 'P will return to its

original value after propagation around a closed path). (II)

To make use of Ward's observations, note that in general the curvature

2-form F, defined by Eq. (29), can be decomposed into its self-dual and

anti-self-dual parts F = F+ + F-, where

Therefore, F will be self-dual (F = *F) if and only if it vanishes when

restricted to all ~ planes and anti-self-dual (F = - *F) if and only if

it vanishes when restricted to all ex. planes. Note that if F vanishes when

restricted to all ex. planes and all ~ planes, then F = O. The proof of

this is given in Ref. 10 and proceeds along the following general lines: the

tangent vectors to both ex. and ~ planes are always null vectors. Therefore,

each pair of ex. and ~ planes through an arbitrary point p E C4 intersect in

a null line through p. The set of null lines determined by all pairs of ex.

and ~ planes through p form a null cone through p. Now, if F vanishes

when restricted to all ex. and ~ planes, then it vanishes along any null line

contained in the null cone at p. Since one can always choose four linearly

independent null vectors as a basis for C4 , F vanishes at p. Hence, since p
is an arbitrary point, F vanishes everywhere in C4•

The equations used by Belavin and Zakharov [Eqs. (3) or (2) and (lb)]

and Ueno and Nakamura [Eqs. (4)] are derived by requiring that F vanish

on the 2-form equivalent of Ward's ex. planes. This will make F anti-self-dual

and is achieved by simply setting the self-dual parts of F, with respect to

the basis of Eq. (24), equal to zero. To facilitate doing this, introduce the

two-dimensional duality operation

p+ = ~ (F +*F) ; F- = ~ (F - *F) .

800 = 00 r (dydz + dydi) , 88 = -1, (31)

and the projection operators 1t and ft, the latter defined by

1tW = 1t( wydy +wjdy + wzdz + widi) = wydy + wzdz

ftoo = oojdy + OOidi.

These constitute the residuum of independent relations in the chosen rep­

resentation or gauge.

To show how these two representations arise, we will need to use the

theorem of Frobenius( 12) :

Theorem: If A is a I-form matrix and d4 = A 2, then there exists a

matrix of functions M such that A = (dM)M-1.

These operators obey the relations
Equations (32a) and (33a) therefore imply that

1t2 = 1t, ft2 = ft, ft + 1t = 1, ft1t = 0

1t8 = 8ft, ft8 = 81t.

The last two relations can be verified by operating on the I-form 00; note

that in general 1t, ft, and 8 operate on I-forms.

When applied to the exterior derivative d, the operations 8, 1t, and ft

(35)

Multiplying on the left by 'P and on the right by M and N, respectively,

these become

1t'PAM + 'P1tdM = 0; ft'PAN + 'PftdN = o. (36)
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Noting that d'P = 'PA, the latter pair of equations can be written as where

Define the matrix] : = M-IN. The two representations (choice of gauge

for A) are then arrived at as follows in Sec. 4.1 and Sec. 4.2.

4.1 The Representation "ITA =A, 1'I'A= 0
In general,

nd('PM) = 0; ftd('PN) = O. (37) (48)

If we now define r := -A = ftdj .r I, Eq. (47) becomes Dr = rr.
Then by the Frobenius integration theorem there exists an invertible matrix

function Y such that r = (DY) y-I or

DY = n.
d('PM) = ftd('PM) + nd('PM). (38)

The second term on the RHS is zero by the first of Eqs. (37), while the first

term is

ftd('PM) = ftd(\f'.N]-I) = ftd('PN)rl + 'PNftdj-l. (39)

Now, the first term on the RHS of Eq. (39) vanishes by the second of Eqs.

(37) so that

d('PM) = 'PNftdj-1 = 'PM]ftdrl = -'PMftd] ·rl. (40)

Letting 'PI = 'PM and comparing with d'Pl = 'PIAl we have

To see that this corresponds to the equations of Deno and Nakamura, use

the explicit form of D given by

and r = ftd] ·rl. Substitution and multiplication by 1;-1 yields

Defining

AI = -ftd] ·r1.

Dropping the prime, in this choice of gauge ftA = A, nA = O.

4.2 The Representation 1'I'A= A, "ITA = 0
Here, we begin with

(41) D1 =Oy + 1;-IOi, Al = Oi] )-1,

D2 =-oz+S-10y, A2 =Oy]·rl,

Eq. (51) becomes

d('PN) = ftd('PN) + nd('PN). (42)
(52)

The first term on the RHS vanishes by the second of Eq. (37), while the

second term is

nd('PN) = nd('PM]) = nd('PM)] + 'PMndj. (43)

The first term on the RHS vanishes by the first of Eq. (37) and therefore,

d('PN) = 'PMndj = 'PNr11td] = -'PNndj-1 I (44)

from which we get the pair of Eqs. (4). Note that

since nA = 0, and Eq. (53) is equivalent to Eq. (5).

4.4 The Equations of Belavin and Zakbarov
Here, we combine the first pair of Eqs. (34) to obtain

Again, letting 'PI = 'PN and comparing with d'Pl = 'PIAI,
(54)

Dropping the prime, in this choice of gauge nA = A, ftA = O.

4.3. The Equations of Ueno and Nakamura
In the representation ftA = A, nA = 0 the requirement that the self­

dual parts of F vanish led to the second pair of Eqs. (34). These equations

are arbitrary up to multiplication by a complex number S. Combining the

pair gives

or

410

AI = -ndj-I I

DA +M = 0,

(45)

(46)

(47)

or DA +M = 0 where D : = nd - 1;0 ftd and no distinction is made

between the D defined here and in Eq. (48); no confusion should result.

Again, defining r := -A = ndj-I .] we have Dr = rr and by

the Frobenius integration theorem there exists an invertible matrix func­

tion Y such that r = (DY) y-I or Dr = rr. In this case the explicit

representation of D is given by

Substitution of Eq. (55) and r = ndj-l ) into Dr = rr gives
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Now, from Eq. (45) we have

A = -1tdj-1 .j = -(dydy + dZdz)j-1 -]

= -dYdyrl -] -dZdzr1.j =dyA2 -dzAI. (59)

And Eq. (56) is equivalent to Eq. (4). Here itA = 0 so that diAl -dyA2 = 0

again yields Eq. (5).

To see that Eqs. (4) and (56) are indeed equivalent to the form given

by Belavin and Zakharov in Eqs. (I b) or (3), note that if 1tA = A satisfies

Eq. (54) then so does (1t-1; 0 it)A = A. The components of A are then

A = (1t-1;0it) (Aydy +Azdz +Aydy +Aidi)

= (Ay - SAi) dy + (Az + SAy) dz . (58)

For consistency with Ling-Lie Chau et ai. (13) we define

DI = dy + 1;-ldz; Al = dzrl .j = -rldzj;

D2 = di _1;-ldy; A2 = -dyrl -] =rldyj.

(57)

group G identified with the "gauge group" and its associated Lie algebra, g.
It is the interpretation of the gauge potential as a connection form with an

associated covariant derivative operator that leads to the strong geometrical

content of gauge theory.

In the case of the gauge fields described by the equations of Belavin and

Zakharov and Deno and Nakamura, the gauge potential [Eq. (25)] is a

g -valued 2-form on C4, two gauge potentials being regarded as equivalent

if they are related by a gauge transformation [Eq. (28)]. The corresponding

gauge field or curvatures [(Eq. (29)] is a g-valued I-form on C4• The

requirement that this curvature 2-form vanish on the 2-form equivalent of

the a planes described in Sec. 4 led directly to both forms of self-duality

relations introduced by these authors.

5. A GENERALIZED FORM OF TIlE ERNST EQUATION

For the important case of axial symmetry, the Einstein field equations of

general relativity can be reformulated in terms of a complex function E,

independent of azimuth. Emst( 4) obtained this result by beginning with the

Papapetrou line element in the form

Comparing Eqs. (58) and (59),

Al = -(Az + 1;4y); A2 = (Ay -1;4i)'

Eqs. (4) and (56) then become

(60)

where I, (0, and y are only functions of z and p (the symbols here have

their conventional meanings).

The field equations for I and 00 are then obtained by variation from the

Lagrangian density

(dy + 1;-ldz)Y = _1;-1 (Az + 1;4y)Y

(dt _1;-ldy)Y = 1;-1 (Ay -1;4i)Y.
(61) This results in

(65)

Letting 'A. = 1;-1 and Y = q' this pair of equations takes the form jV21 = VI·V 1-p-2tv(O·V (0

V .(p-2fV (0) = 0,
(66)

Noting the definitions given in Eqs. (17), dy = dXl + i dx" Ay = AXl +i Ax, ,

etc., Eqs. (62) can be written as

(dy +Ay ) q' + 'A.( dz +Az) q' = 0

(di + Ai) 'P - 'A.( dy + Ay) 'P = O.
(62) where V is the three-dimensional divergence operator. Introducing a func­

tion ~ independent of azimuth, Ernst was able to show that the second of

Eqs. (66) can be satisfied identically. Expressing the first of Eqs. (66) in

terms of ~ and introducing the complex function E = I + i~ leads to the

homogeneous quadratic differential equation

where here, as in Eqs. (3), Di = dx i +Axi' These are the same as Eqs. (3).

The equations of Deno and Nakamura and Belavin and Zakharov are

therefore see!). to arise naturally in the language of exterior forms. They

correspond to the equations obtained by setting the self-dual parts of the

curvature form F = dA +AA equal to zero in the different gauges charac­

terized by itA =A, 1tA = 0 and 1tA =A, itA = O.

The derivation given above is an example of the utility of the language

of modem differential geometry (differential forms, fiber bundles, etc.) for

studying gauge fields. While space-time has the global symmetries that

correspond to the Poincare group, gauge theories have additional internal

symmetries that give extra degrees of freedom. These are captured in the Lie

It is interesting, and highly suggestive, that there is a close connection

between the self-duality relation as expressed by Eq. (5) and the Emst

equation, Eq. (67). To illustrate this relationship, a generalized form of the

Ernst equation will first be derived from the self-duality relation Eq. (5)

by imposing axial symmetry and requiring that the fields be static. The

generalized equation will then be reduced to the usual form of the Ernst

equation by using the Poincare parametrization for j.
Equation (5) can be written in terms of the complex rectangular coor­

dinates Xi as

(67)

(63)
(DI - iD2) 'P + f...(D3 + iD4) 'P = 0

(D3 - iD4) 'P - 'A.(DI + iD2) 'P = 0,
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where D and V are, respectively,the four-dimensional Laplacian and gra­

dient operator for Euclidean space.

Equation (68) is more general than that given by Takeno,o4) who

identifies terms similar to the bracketed last term of Eq. (68), but restricts

consideration to SU(2) in Yang'sOS) R gauge.

If the static condition ox, ] ::: 0 holds, the first term within the square

brackets of Eq. (68) will vanish, while if axial symmetry with respect to the

X3 -axis is imposed, the last term within the brackets will vanish. Thus the

static, axially symmetric case results in

equations

+2'P-1(p*Vp.V'P-pVp*·V'P)] :::0. (71)

For constant phase solutions (where p ::: creia, cr being a real function
and a a real constant), these become

(69)

Defining E ::: 'P+icr these combine to yield the form of the Ernst equation

given by

where V2 and V are the three-dimensional Laplacian and gradient oper­

ators. Equation (69) can be regarded as a generalized Ernst equation.(6)

Restricting consideration to SU (2) gauge fields, Pohlmeyer(l7) has noted

that if the Poincare parametrization for] is chosen, following Yang, to be
of the form

'PV2cr-2Vcr·V'P::: 0

'PV2'P + Vcr·Vcr- V'P·V'P::: O.
(72)

the self-duality relation, Eq. (5), results in Yang's equations in the R

gauge.(8) The latter have been shown by Witten(9) to reduce to the Ernst

equation in the static, axially symmetric case for constant phase solutions

and real Xj where p ::: p* and 'P is real (p* is the complex conjugate

of p).
Similarly, using this parametrization for] in Eq. (69) results in the two

1 (1 -)] :::'P p 'P2 ~ pp ,
(70)

(73)
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Resume

L 'utilite desformes differentielles pour comprendre I 'origine des equations du champ de

jauge auto-duale est illWitree en rJeriwnt Ie systeme d'equations differentielles liniaires

aux rJeriviespartielles introduit par Belavin et utilise dans une forme differente par

Ueno et Nakamura. La candition d'integrabilite pour ces systemes est alors utilise pour

montrer leur relation avec une forme generalisee de I'equation d'Ernst.
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Endnote

1 Restrictions on g change the group; for example, if det g = 1,

g £SL (n, C); introduction of an inner product such that ('P', 'P') =
('P, 'P) implies that gg t = 1 (g is unitary), while a restriction to

orthonormal bases ('Pa, 'lip) = ~pmeans that A is anti-Hermitian.

References

1. A.A Belavin and V.E.Zakharov, Phys. Lett. B 73, 53 (1978).

2. K. Ueno and Y. Nakamura, Phys. Lett. B 109, 273 (1982).

3. Y. Brihaye, D.B. Fairlie, J. Nuyts, and RG. Yates,J. Math. Phys. 19,
2528 (1978).

4. FJ. Ernst, Phys. Rev. 167, 1175 (1968).

5. For a discussion of Grassmann inner products, see I. Hauser and FJ.

Ernst, J. Math. Phys. 19, 1316 (1978), and FJ. Ernst and J. Plebanski,

Ann. Phys. 107, 266 (1977). Of particular use here is the relation

a r(bt\c) =b(a rc) + (-lV(a rb)c,

where a is a I-form and b, c are p and r-forms, respectively.Note,

also, that (a t\b) r c = a r (b r c), for a, b, c any p, q, r
forms.

6. See Ref. 10 for a discussion from a somewhat different point of view.

7. See, for example, Ref. 10 and W. Drechsler and M.E. Mayer,Fiber Bun­

dle Tedmiques in Gauge 1beories, Lecture Notes in Physics (Springer­

Verlag,Berlin, 1977), Vol. 67.

Gerald E. Marsh

Argonne National Laboratory
9700 South Cass Avenue

Argonne, Illinois 60439 U.SA

GeraldE. Marsh

8. RS. Ward, Phys. Lett. A 61, 81 (1977).

9. R Penrose and R.S. Ward, General ReJattvity and Gravitation, edited

by. A. Held (Plenum Press, NY, 1980), vol. 2. Chap. 7; see, also, R.

Penrose and MAH. MacCallum, Phys. Rep. C 6, 241 (1972).

10. C. Nash and S. Sen, 1bpology and Geometry for PhysicisJs (Academic

Press, Orlando, Fla. 1983), p. 283.

11. In this context see the discussion given by Yang.(15)

12. H. Flanders, DifferenJtal Forms with Applications to the Pbysical Science

(Academic Press, NY, 1963), Sees. 7.3 and 7.4.

13. Ling-Lie Chau, Ge Me-Lin, and Wu Yong-Shi, Phys. Rev. D 25, 1086
(1982).

14. S. Takeno, Prog. ·Thear. Phys. 66, 1250 (1981).

15. C.N. Yang, Phys. Rev. Lett. 38, 1377 (1977).

16. In the context of SU(N) and Yang's R-gauge, this equation has been

given by B.C. Xanthopoulos, Solutions of Einstein s Equations: Tech­

niques and Results, Lecture Notes in Physics (Springer-Verlag,Berlin,

1984), Vol. 205.

17. K. Pohlmeyer, Commun. Math. Phys. 72, 37 (1980).

18. The parametrization given in Eq. (70) has been discussed in the context

of SL(2, C) and Minlrowskispace fields by HJ. de Vega,Commun. Math.

Phys. 116, 659 (1988).

19. 1. Witten, Phys. Rev. D 19, 718 (1979).

413


