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The elements that comprise this essay are based on well-founded and accepted physical 

principles—but the way they are put together, as well as the view of commonly accepted 

forces and the resulting motion of macroscopic objects that emerges, is unusual.  What 

will be shown is that classical motion can be identified with collective quantum 

mechanical motion.  Not very surprising, but the conception of motion that emerges is 

somewhat counterintuitive.  After all, we all know that the term  in the Schrödinger 

equation becomes ridiculously small for m corresponding to a macroscopic object.  

 

Space-time and Quantum Mechanics 

To deal with the concept of motion we must begin with the well-known problem of the 

inconsistency inherent in the melding of quantum mechanics and special relativity.  One 

of the principal examples that can illustrate this incompatibility is the Minkowski 

diagram, where well-defined world-lines are used to represent the paths of elementary 

particles while quantum mechanics disallows the existence of any such well defined 

world-lines.  Despite this conceptual dissonance, the fusion of quantum mechanics and 

special relativity has proved to be enormously fruitful.  This point has been made by 

Sklar1 in his book Space, Time, and Spacetime: “Despite the rejection in quantum theory 

of the very notions used in the original justification of the construction of the space-time 

of special relativity, it is still possible to formulate quantum theory in terms of the space-

time constructed in special relativity.” 

 

Feynman2 in his famous paper “The Theory of Positrons” partially avoids the above 

conundrum, implicit in drawing space-time diagrams, by observing that solutions to the 

Schrödinger and Dirac equations can be visualized as describing the scattering of a plane 

wave by a potential.  In the case of the Dirac equation, the scattered waves may proceed 

both forward and backward in time and may suffer further scattering by the same or other 

potentials.  An identity is made between the negative energy components of the scattered 

wave and the waves traveling backward in time.  This interpretation is valid for both 

virtual and real particles.  While one generally does not indicate the waves, and instead 

draws world-lines in Minkowski space between such scatterings, it is generally 
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understood that the particle represented by these waves does not have a well defined 

location in space or time between scatterings.3 

 

The Feynman approach visualizes a non-localized plane wave impinging on a region of 

space-time containing a potential, and the particle the wave represents being localized4 to 

a finite region of Minkowski space by interaction with the potential.  The waves 

representing the scattered particle subsequently spread through space and time until there 

is another interaction in the same potential region or in a different region also containing 

a potential, again localizing the particle.  Even this picture is problematic since the waves 

are not observable between interactions.  For the Dirac equation, the now famous Figure 

1 is intended to represent electron scattering from two different regions containing a 

scattering potential.  The plane electron wave comes in from the lower left of the figure, 

is scattered by the potential at A(3).  (a) shows the scattered wave going both forward and 

backward in time; (b) and (c) show two second order processes where (b) shows a normal 

scattering forward in time and (c) the possibility of pair production.  Feynman meant this 

figure to apply to a virtual process, but—as discussed by Feynman—with the appropriate 

interpretation it applies to real pair production as well.  Although the lines are drawn to 

represent these particles, no well-defined world-lines exists.   

 

 
Figure 1.  Different electron scattering possibilities from a potential region.  (a) is a 

first order process while (b) and (c) are second order.  [Based on Figure 2 of R. P. 

Feynman, “Theory of Positrons”, Phys. Rev. 76, 749-759 (1949)] 

 

In a bubble chamber, where the path followed by the charged particles is made visible by 

repeated localizing interactions with the medium, one would observe a pair creation event 
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at A(4), an electron coming in from the lower left, and an annihilation event at A(3).  Of 

course, since the particles involved here are massive, in the case of real pair production 

the interval between A(3) and A(4) is time-like and the spatial distance between these 

events depends on the observer. 

 

To reiterate, a world-line is a classical concept that is only approximated in quantum 

mechanics by the kind of repeated interactions that make a path visible in a bubble 

chamber.5  Minkowski space is the space of events—drawing a world-line in a 

Minkowski diagram implicitly assumes such repeated interactions taken to the limit of 

the continuum.6  While the characterization of Minkowski space as the space of events is 

often obscured by drawing world-lines as representing the putative path of a particle in 

space-time independent of its interactions, remembering that each point in Minkowski 

space is the position of a potential event removes much of the apparent incompatibility 

between quantum mechanics and special relativity, but it leaves us with a revised view of 

what constitutes motion.   

 

Quantum Mechanical Motion 

The picture of motion that emerges after the melding of quantum mechanics and special 

relativity is very unlike that of the classical picture of the path of a massive particle—like 

a marble—moving in space-time.  Consider a Minkowski diagram showing the world-

lines of several marbles at different locations.  Given a space-like hypersurface 

corresponding to an instant of time in some frame, all the marbles would be visible at 

some set of locations.  If one chooses a neighboring instant of time, these marbles would 

all still be visible at slightly different locations.  This is because of the sharp localization 

of the marbles in space and time due to the continual interactions of their constituent 

components.  Now consider the case of several elementary particles such as electrons.  

On any space-like hypersurface, the only particles “visible” would be those that were 

localized by an interaction to a region of space-time that included the instant of time 

corresponding to the hypersurface.7  After any localization, the wave function of a 

particle spreads both in space and in either direction in time.  Consequently, neighboring 

hypersurfaces (in the same reference frame) corresponding to slightly different times 
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could have a different set of particles that were “visible.” If motion consists of a 

sequential series of localizations along a particle’s path, it is not possible to define a 

continuum of movement in the classical sense—there exists only a series of “snapshots.” 

 

Haag,8 has put this somewhat different terms: “The resulting ontological picture differs 

drastically from a classical one. It sketches a world, which is continuously evolving, 

where new facts are permanently emerging. Facts of the past determine only probabilities 

of future possibilities. While an individual event is considered as a real fact, the 

correlations between events due to quantum mechanical entanglement imply that an 

individual object can be regarded as real only insofar as it carries a causal link between 

two events. The object remains an element of potentiality as long as the target result has 

not become a completed fact.” 

 

It is important to emphasize that between localizations due to interactions, an elementary 

particle does not have a specifiable location, although—because it is located with very 

high probability9 somewhere within the future and past light cones associated with its 

most recent localization—it would contribute to the local mass-energy density.  This is 

not a matter of our ignorance, it is a fundamental property of quantum mechanics; Bell’s 

theorem tells us that there are no hidden variables that could specify a particle’s position 

between localizations.   

 

As an example of how localization works, consider a single atom.  Its nucleus is localized 

by the continuous interactions of its constituent components.  The electrons are localized 

due to interactions with the nucleus, but only up to the appropriate quantum numbers—n, 

l, m, and s.  One cannot localize the electrons to positions in their “orbits.” 

 

Implicit in the discussion above is that an “elementary particle” is not a “particle” in the 

sense of classical physics.  The advent of quantum mechanics mandated that the classical 

notion of a particle be given up.  But rather than accept this, there were many attempts in 

the 20th century to retain the idea of a classical particle by a mix of classical and quantum 

mechanical concepts.  Perhaps the best was David Bohm’s 1952 theory that introduced 
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the idea of a “quantum potential”.  None of these were really successful.  In the end, we 

must live with the fact that an elementary particle is some form of space-time excitation 

that can be localized through interactions and even when not localized obeys all the 

relevant conservation rules and retains the “particle” properties like mass, spin, charge, 

etc. 

 

Above, the flat space-time of special relativity was used in the discussion.  When the 

space-time curvature due to gravitation is included, Minkowski diagrams become almost 

impossible to draw: Given a space-like hypersurface, the rate of clocks at any point on 

the hypersurface depends on the local mass-energy density and on local charge.  

Compared to a clock in empty space-time, a clock near a concentration of mass-energy 

will run slower and will run faster near an electric charge of either sign.  Thus the 

hypersurface does not remain “planar” as it evolves in time.  To draw world-lines one 

must take into account the general relativistic metric.  This is why one uses light cone 

indicators at points contained in regions of interest. 

 

The concepts of quantum mechanical localization and the resulting picture of motion are 

especially important in discussing many-particle problems and the transition to the 

classical world.  In considering the penetration of a potential barrier, for example, one 

often restricts the problem to a single particle and calculates the probability that it will be 

found on the far side of the barrier.  For the many-particle case, say the surface barrier of 

a metal treated as a free-electron gas in a smeared positive background—an example that 

will be relevant later in this essay—one would find that those electron wave functions 

that have been localized on the far side of the barrier will contribute to a real negative 

charge density.  This charge density will interact with the smeared positive background. 

 
Force, Fields, and Motion 

Fields in classical physics are defined in terms of forces on either massive particles—in 

the case of Newtonian mechanics, or charges in the case of electromagnetism.  General 

Relativity changed our way of thinking about the gravitational field by replacing the 

concept of a force field with the curvature of space-time.  
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Starting with Einstein and Weyl,10 there have been many attempts to geometrize 

electromagnetic forces.  In all these attempts, charge—like mass in Newtonian 

mechanics—is treated as an irreducible element of electromagnetic theory that must be 

introduced ab initio.  Its origin is not properly a part of the theory.  It does, nevertheless, 

have a unique space-time signature.11  Charge of either sign causes a negative curvature 

of space-time.  The Einstein-Maxwell system of equations does not, however, allow 

different geometric representations for the electric fields due to positive and negative 

charges.  This is a direct result of the fact that the sources of the Einstein-Maxwell system 

are embodied in the energy-momentum tensor, which depends only on the (non-

gravitational) energy density.  Charge, in its geometrical effect on space-time, always 

enters as Q2 so that both positive and negative charges affect space-time in the same way.  

Consequently, the electric field due to positive and negative charges cannot be identified 

with distinct changes in space-time geometry. This also follows from the fact that, if we 

ignore the very small curvature of space-time due to the energy density of the field, only 

charged particles are directly affected by the presence of an electromagnetic field.  Thus, 

a full geometrization of charge does not appear to be possible within the framework of 

the Einstein-Maxwell equations.   

 

The advent of modern gauge theory, incorporating the concepts of symmetry breaking 

and compensation fields, radically changed the understanding of fields.  The 

electromagnetic interaction of charged particles in particular could be interpreted in terms 

of a local—as opposed to global—gauge theory within the framework of quantum 

mechanics.  Interpreting the electromagnetic field as a local gauge field takes into 

account the existence of positive and negative charges and gives a good representation of 

the electromagnetic forces.  It also gives us a concept of the electric field somewhat more 

enlightening than the classical one where the field is defined as the ratio of the force on 

test charge to the charge in the limit that the charge goes to zero.  

 

The key concept for representing the electromagnetic force as a gauge field is the 

recognition that the phase of a particle’s wave function must be treated as a new physical 
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degree of freedom dependent on the particle’s space-time position.  The 4-dimensional 

vector potential plays the role of a connection relating the phase from point-to-point.  

Thus, the vector potential becomes the fundamental field for electromagnetism.  The 

Aharonov and Bohm effect is generally cited to prove that this potential can produce 

observable effects, thereby confirming its reality. 

 

The “gauge principle”, as it is often called, is well illustrated by considering the non-

relativistic Schrödinger equation in the context of electromagnetism.12  It is also possible 

to also give a relativistic version of the argument that appears below. 

 

The Schrödinger equation for a free particle, 

 

 

 

is not invariant under the local phase transformation 

 
 

 

To be invariant under such a transformation, the free particle Schrödinger equation must 

be modified so that it no longer represents a free particle, but rather one moving under the 

influence of a force.  For the case of electromagnetism, the free particle Schrödinger 

equation must be replaced by 

 
 

 

where  and V transform according to 

 

 



 9 

 

when . 

 

The essence of the “gauge principle” is that demanding invariance under a local phase 

transformation corresponds to the introduction of a force.  Of course, one can argue in the 

reverse: the introduction of a force can be represented as a local phase transformation.  A 

simple example will be given below. 

 

A free particle at rest samples a volume of space at least as large as its Compton 

wavelength, and the wave function associated with this sampling is such that a spherical 

volume is sampled in the absence of external forces.  One might think here of a Gaussian 

packet (the lowest order wave function for the simple harmonic oscillator) which has the 

property of minimizing the uncertainty in both x and p thereby giving the maximum 

localization possible.   

 

If a force acts on the particle—say along the x-axis—this symmetry is broken by an 

extension of the probability distribution (the volume sampled) along the x-axis.  To 

actually be “seen” to move, the particle must participate in a series of interactions so as to 

repeatedly localize it along its path of motion.  If the force acting on the particle is 

modeled as a virtual exchange of quanta, such an exchange—viewed as an interaction—

would serve to localize the particle.  The propagation of a Gaussian wave packet 

representing the propagation of a charged particle under the influence of a constant force 

is an example well worth discussing further.  This problem has recently been extensively 

treated by Robinett13 and Vandegrift.14 

 

The Gaussian wave packet ψ0(x,t) is a solution to the free-particle, one-dimensional 

Schrödinger equation 
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with F = 0.  This solution has the property that it will remain centered at x = 0 for all 

values of t.  Now let F be a time-independent, uniform force, implying a constant 

acceleration.  In classical mechanics such a force has the kinematic relation  
 

                                                   
 

where x0 and v0 are the initial position and velocity, and a is the acceleration.  What 

Vandegrift shows is that the Gaussian packet solution to the Schrödinger equation with F 

a uniform force becomes a wave packet centered at x(t), that is 
 

                                        

 

is a solution to the Schrödinger equation.  The phase eiS(x,t) is a local phase transformation 

corresponding to eiα(x,t) above, and S(x,t) is explicitly given by   
 

                                   
 

This solution to Schrödinger’s equation shows that the imposition of a uniform force is 

equivalent to making a non-relativistic transformation to an accelerating reference frame.  

It is also an example of the gauge principle. 

 

Quantum Electrostatics 

The gauge principle should also be able to explain macroscopic phenomena.  The 

example to be used here will be that of electrostatics.  Discussing electrostatics in a 

quantum mechanical framework is perhaps one of the most counterintuitive examples of 

collective quantum phenomena leading to classical behavior.  What will be shown here is 

that the electric field, best interpreted as a phase field, affects the electron wave functions 

at the surface of a conductor and collectively this is what is responsible for the force 

acting on the conductor.  Of course one could simply use the classical electric field 

concept to achieve the same result, but—recalling the example of the Gaussian packet—
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greater insight into how the classical motion emerges is gained by thinking of the electric 

field as a phase field. 

 

If a sphere holding a net positive charge Q is placed in an initially uniform electric field 

E0, it will experience a force in the direction of the applied field.  In solving Laplace’s 

equation in terms of spherical harmonics, this force results from the term Q/4πa2, where a 

is the radius of the sphere.  The total charge density on the surface of the sphere is 

3ε0E0cosθ  +  Q/4πa2. The electric field lines and associated surfaces of constant potential 

are shown in Fig. 2. 

 

 

                                           
 

 

Figure 2.  Electric field E0 and associated surfaces of constant potential U for a 
positively charged sphere of radius a in an initially uniform field.  The induced 
surface charge density varies with θ, whereas that due to Q does not.  

 

Notice that the constant potential surface corresponding to the potential of the sphere 

intersects the sphere and divides its surface so that those electric field lines terminating 

on negative surface charges are on one side of the intersection, and those whose origin is 

z 

θ 
E0 

U=Const. 

Sphere equipotential 

θ = 0, σ = 3ε0E0 + Q/4πa2 θ = π, σ = −3ε0E0 + Q/4πa2 
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on positive surface charges are on the other.  The value of θ giving the location of the 

intersection is given by the solution to the equation 
 

                                                     
 

 

For , the electric field is directed outward from the surface for all θ.  As is 

readily seen from the figure,  , which implies a net force in the positive 

z-direction. 

 

From a quantum mechanical perspective, the wave function at the surface is modified by 

the electric field interpreted as a phase field—similar to the example of the Gaussian 

wave packet discussed above.  A net positive charge corresponds to removing a portion 

of the electron cloud of the nuclei near the surface, thereby unshielding these nuclei, 

which are the source of the positive charge. The wave function at the surface, as will be 

seen, is affected asymmetrically by the presence of an external electric field. 

 

In order to calculate the wave function one has to simplify the problem and often uses the 

so-called jellium model15 where the metal is modeled as a uniform positive background 

and an interacting electron gas.  The surface of the metal is represented by the jellium (or 

geometrical) edge and is located at one half of the lattice spacing from the surface atom 

nuclei.  The rapidly decaying electron cloud density extends beyond the geometrical 

surface.   

 

The centroid of the excess charge distribution† (also known as the electrical surface) 

linearly induced by an external electric field is given by 

 

                                                
† The excess charge distribution is also known as the screening or induced charge distribution. 
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Here nσ (x) is the surface-charge density induced by the electric field perpendicular to the 

surface.16  This centroid, calculated for 0 ≤ θ ≤ 2π, gives the position of the electrical 

surface—that surface where the external electric field appears to start.  This surface is 

also the analog of the image plane (for the jellium and excess charge distribution) in the 

case of a plane conductor.  Because we will be considering the position of the electrical 

surface at θ = 0 and θ = π, its position will be denoted by zref.  The geometry and notional 

wave functions are shown in Fig. 3. 

 

                                                         
 

 
Fig. 3.  Surface wave functions for a positively charged metal sphere in an initially 
uniform electric field E0.  zref  is the centroid of the excess charge distribution at θ = 0 
and θ = π.  Notice that the location of zref is closer to the geometrical edge on 
positively charged portion of the sphere. The actual magnitude of the distance zref is 
around 3 a.u., or about 1.6 Å.   

 

The symmetry of the electron-probability distribution along the x-axis is broken by the 

charge Q.  This results in a change in the position of zref, which is determined by the net 

electric field due to the charge on the sphere and the external electric field.  

 

Thus, for an uncharged sphere placed in an initially uniform field, classically the gradient 

of the potential giving the field near the surface at θ = 0 and θ = π is equal in magnitude, 

but opposite in direction with respect to the surface of the sphere.  The net force therefore 

vanishes.  Quantum mechanically, the location of the image surface is at the same 

z 

+ 

+ 
+ 

+ 

− 

− 

zref zref 

Geometrical 
(jellium) edge 

E0 
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distance from the jellium edge at θ = 0 and θ = π so that the excess charge distribution 

interacts with the jellium equally yielding no net force in the direction of the field. 

 

This will no longer be the case if the sphere is charged: the electric field at the surface 

due to the charge will asymmetrically sum with that due to the external field E0.  For a 

positively charged sphere the net field at θ = 0 will be greater than at θ = π. As the 

magnitude of the external electric field increases, the image surface moves inward 

towards the surface17 at θ = 0, but less so than at θ = π.  Because the electrical image 

surface is now closer to the jellium at θ = 0 than at θ = π, there is a net force in the 

positive z-direction (the positive charge on the sphere can be pictured as residing on the 

geometrical surface).   

 

For a negatively charged sphere, the image surface moves outward (away from the 

surface) as the magnitude of the external field increases,18 but more so at θ = π than at  

θ = 0.  The negative charge on the geometrical surface is then further away from the 

effective negative charge due to the excess charge distribution.  The separation is greater 

at θ = π than at θ = 0.  This results in a net force in the negative z-direction.   

 

Quantum mechanically, the origin of the force is similar to the example given earlier of 

the Gaussian packet, but in the case of the more complicated problem of a charged 

macroscopic sphere, one must adopt some simplifying model of the surface and its 

associated wave function.  Above, the jellium model was used for the surface of a 

charged sphere with notional electron wave functions to illustrate the origin of the 

classical force.  Thus, the collective force due to the asymmetric excess charge 

distribution that results from the localization of the underlying electron wave functions is 

the classical force. 

 

Recapitulation 

This essay has attempted to address, from a modern perspective, the motion of a particle.   

Quantum mechanically, motion consists of a series of localizations due to repeated 

interactions that, taken close to the limit of the continuum, yields a world-line.  If a force 
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acts on the particle, its probability distribution is accordingly modified.  This must also be 

true for macroscopic objects, although now the description is far more complicated by the 

structure of matter and associated surface physics.  The motion of macroscopic objects, 

as was illustrated in the context of electrostatic forces, is governed by the quantum 

mechanics of its constituent particles and their interactions with each other.  The result 

may be characterized as: collective quantum mechanical motion is classical motion. 

 

Since electromagnetic forces may be represented as a gauge field, electrostatic forces 

arise from the non-constant phase character of the electric field affecting many-particle 

wave functions.  The example used was that of the force on a charged or uncharged 

metallic, conducting sphere placed in an initially constant and uniform electric field.   

 

As was written in the introduction, there is little that is new in this essay.  On the other 

hand, quantum mechanics is widely viewed as being imposed on the well-understood 

classical world of Newtonian mechanics and Maxwell’s electromagnetism.  This 

dichotomy is part of the pedagogy of physics and leads to much cognitive dissonance.  In 

the end, there is no classical world; only a many-particle quantum mechanical one that, 

because of localizations due to environmental interactions, allows the emergence of the 

classical world of human perception. Newtonian mechanics and Maxwell’s 

electromagnetism should be viewed as effective field theories for the “classical” world. 
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