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The force-free magnetic-field condition VXH=aH is expressed in terms of a flux function ¥; « is
then also a function of ¥, and with suitable restrictions the resulting equations can be separated and
solved. The case of spherical coordinates yields four sets of solutions that are shown to be dependent
and equivalent to a simple generalization of those given by Chandrasekhar [Proc. Natl. Acad. Sci.
U.S.A. 42, 1 (1956)]. Similarly, the case of cylindrical coordinates results in a generalization of the solu-
tion given by Furth, Levine, and Waniek [Rev. Sci. Instrum. 28, 949 (1957)].
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INTRODUCTION

The foundation for much of the work on force-free
magnetic fields can be found in the literature of fluid
mechanics. There, the analog to the force-free magnetic-
field condition appears as VXV=QV, where V is the
fluid velocity. Solutions to this equation, where Q is a
function of position, are known as Beltrami fields; solu-
tions for the case where () is a constant are known as
Trkalian fields. Bjorgum [1,2] has written two
comprehensive papers on these types of fluid flow and has
also given a method of finding Trkalian fields from solu-
tions to the scalar wave equation. This is essentially the
same method later developed by Chandrasekhar and
Kendall [3] for application to force-free magnetic fields.
A detailed exposition of this material is given in the
thesis of Buck [4].

When a, in the force-free magnetic-field condition
VXH=aH, is not a constant, the technique of finding
solutions to this equation by solving the scalar wave
equation is generally not applicable. An alternative ap-
proach is to express the magnetic-field components in
terms of a flux function ¥ (comparable to the stream
function in hydrodynamics) and then demand that the
field satisfy the force-free condition. The equation that
results is a known form of the Grad-Shafranov equation
[5,6] for constant fluid pressure. The latter is a second-
order, nonlinear potential equation containing a single ar-
bitrary function.

The Grad-Shafranov equation can then be separated in
terms of a second arbitrary function g(¥). This results in
a form of Bernoulli’s equation for the function o and an
equation for the flux function ¥, which may be solved for
the case where g (W) takes a particularly simple form.
The solutions to these equations, in both spherical and
cylindrical coordinates, are generalizations of the solu-
tions given by Chandrasekhar [7], Furth, Levine, and
Wanick [8], and Emets and Zamidra [9].

I. MAGNETIC-FIELD COMPONENTS IN TERMS
OF THE FLUX FUNCTION

When the magnetic field is symmetric about an axis,
one may introduce the analog of Stokes’s stream function
for incompressible, axially symmetric velocity fields.
Such a function is known as the flux function [10], and is
introduced as follows: In arbitrary curvilinear coordi-
nates, the divergence of B is given by

1 — .
V-B=—=9,(VgB' 1
Ve x(VEB') (1)
where g =|g,;[, i=1,2,3 and the symbols have their con-
ventional meanings. If B is independent of one coordi-
nate (say x3) the equation

1 1
Ve Ve
is obviously satisfied if one introduces a function ¥, such
that

VEBlzaszp, VgB*=—3, ¢. 3)

V-B=—=3, (VgB)+—=3, (VgB))=0

For orthogonal coordinates, gk=g, =0 for iF#k;
g;=h}?and g"=1/h} V'g =h,h,h,. The physical com-
ponents [11] are then h,B’. From Eq. (3) these can be
written

hla b= 1

B =_ﬂ_a 1/)=—L8 ¥
(2) ‘/'g_ X, h1h3 X

B,= 0x,¥»

4)

where the subscript in parentheses designates the physi-
cal component (the parentheses will henceforth be
dropped).

In spherical coordinates, (x;,x,,x3)—(r,0,¢) and
h,=1, h,=r, hy=rsinf. Thus, assuming axial symme-
try so that the fields are independent of ¢,
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1 1
¥, Bo=-— r sinf

B,= 3,9 . (5)

rsing
In cylindrical coordinates, (x;,x,,x;)—(r,¢,z) and
h,=h;=1, h,=r. Consequently, for axial symmetry,

B=—1a,4, B,=1o,y. ®
r r

It is interesting to note that the introduction of a flux
function ¥ is equivalent to writing the field in terms of
two functions P and T that, respectively, generate the po-
loidal and toroidal components of the field. In spherical
coordinates, for example, expanding

H=2ZXrT(r,0)+VX[ZX1P(r,0)] (7)
results in
H=———3,[r’in6P(r,0) ]
r*sin@
_ 2. ~ ~
sin® 9,[r*sin6P(r,0)]160+rT(r,0)¢ . (8)

Defining the flux function as r%sinfP(r,0) gives the same
result as Eq. (5). In this formulation B is given by rT.

II. FORCE-FREE CONDITION
IN SPHERICAL COORDINATES

Substituting the magnetic-field components, in the
form given by Eq. (5), into the force-free condition
V XB=aB results in three equations,

a

sind 0gY=(34B 4+ B coth) , 9)
a —
g V= (8:Bs By /), (10)
= — 1 *
aB¢ rsin@A ¥ (11)

where B, =B¢(r,6) and
A*Y=082p+ 3%y — = cotbd . (12)
r r
Equations (9) and (10) together imply that

3,Yd4(r Sin6B ;) —dgyd, (r sinbB4)=0 (13)

which will be satisfied if 7 sinfB,= f(¢), where f(¥) is
an arbitrary function of V¥ alone; thus

L. (14)

r sin@

B¢=

Equation (11) may therefore be written as
A*Yy=—af(¢). a may now be determined from either
Eq. (9) or Eq. (10) as a= f'(¥), where the prime indicates
differentiation by W. Defining u=cos6, Eq. (11) may be
written in final form as

2
a%¢+“—rzlﬂa;¢=—f(¢)f'(¢) . (15)

As mentioned in the Introduction, this is a form of the
Grad-Shafranov equation. Approximate nonconstant a
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solutions to this equation have been discussed in the as-
trophysical literature [12,13]. Derivations are given in
the following sections of exact nonconstant o solutions
that are then shown to be generalizations of known solu-
tions.

III. SEPARATION AND SOLUTION
OF THE GRAD-SHAFRANOV EQUATION
IN TERMS OF AN ARBITRARY FUNCTION

Since f(¥) is an arbitrary function of W, the right-
hand side of Eq. (15) can be written as g(¥)=— f(¥)a,
where g(W) is a second arbitrary function of W. The pur-
pose of this definition is to allow a to be determined in
terms of g(W¥). Differentiating g(¥)=—f(¥)a with
respect to W, one obtains

a’—g—a——l—a3=0 . (16)
g 4

This is a form of Bernoulli’s equation and is completely
integrable. Letting £=a 2, the solution is

E=Aexp —2exp

vg'
—2 | "=d
2 Y

vg'
—2 | =-d
o)

2f‘”g?'d¢ dy

X f lﬁéexp

(17

where A is a constant of integration.

While g(W¥) is still arbitrary in Eq. (17), the remaining
equation, A*y=g(y), will apparently only separate if
g(¥)=—k?V¥, where « is a constant. If g(¥) is so re-
stricted and V¥ is assumed to be of the form ¢y=&(r)T(u),
the equation separates, in terms of a separation constant
A, into

" (r)+ l.@—% ’d>(r)=0 (18)
r

and

)+ I(p)=0. (19)

1—p?
For g(¥)=—«*V¥, Eq. (17) gives £= A¥ 2+1/k? so
that
_ K
a= (B2+¢2)1/2 ’

Note that if B =0, a=k; and since a=f"'(¥), apart from
a constant of integration, f(¥) is determined by Eq. (20)
to be

f@)= [ adyp=k(B2+y*)'/2 @1

B?=Ak*. (20)

Now if f(¥) does not have a zero on the polar axis,
Eq. (14) implies that B, is singular. Therefore, if the con-
stant B is not required to vanish, the axis must be exclud-
ed from the domain [14]. This is a physically reasonable
requirement if B is interpreted as being proportional to
an axial line current. Because of the symmetry of the
problem, such an axial current will only generate a
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toroidal field, and can flow without altering the force-free
character of the configuration. While such a line current
is mathematically acceptable, real world applications
would require the imposition of boundary conditions cor-
responding to a finite current density.

Consider Eq. (18). If A is restricted to the values
A=n(n+1), n=0,%x1,%£2,..., the solutions to this
equation are the Riccati-Bessel functions with argument
kr;i.e., (kr)c,(kr) where c,(kr) is one of {j,(kr), y,(kr),
h{V(kr), h{¥(kr)}. The properties of these functions fol-
lows from those of the spherical Bessel functions.

The solution to Eq. (19) can be given in terms of the
generalized Jacobi polynomials [15],

(1_'u)(a+1)/2(1_“)(ﬂ+1)/2P(a,E)(“)
m ’
a,f==x1, m=0,1,2,... (22)
provided Eq. (19} is rewritten as
I"(u)+G*Pm,u)T(n)=0 (23)

and G'*P(m,u) is restricted to the form

a

B +1 —1

+1 m(m-+3)+2 m(m—+1)
(1—pu?) (1—pu?)
m(m—+1) m(m—1)
(1—us) (1—p*)

GV and GV will be compatible with the re-
quirement from Eq. (18) that A=n(n +1) if m =n. The
same is true for GV if m=n—1 and G'"b 7V if
m =n+1. (While other possibilities exist for negative n,
they add nothing substantive to the discussion.)

Given these constraints, there are apparently four pos-
sible solutions given by Eq. (22):

(1—)P" " D(p)
(1+p)P V()
(1—p)14+p)P () |
Py ()

L= n>1. (24)

The restriction to n =1 is imposed to exclude the n =0
case for the first two solutions because these can be ruled
out on physical grounds (they require sources and sinks
on the negative z axis); and for n =0, the third and fourth
sets of solutions are zero. In the case of the fourth solu-
tion, P{" "V (u)=0 since this polynomial satisfies the
condition n +a+B+k=0,a=—j, 1 =k < j =n (see Ref.
[15)). Note also that all four possible solutions have zeros
at u==1, corresponding to the positive and negative z
axis, respectively. Each of the solutions of Eq. (24) can
be combined with a solution of Eq. (18) of order n to form
the flux function.

The four solutions given by Egs. (24) cannot, however,
be linearly independent since Eq. (23) is only of second
order. It is shown in the Appendix that the following re-
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lations hold for n > 1:

(1=p)PE " D(p)=—1+p)Pi V() , (25)
Py V(w=Hp+D(—DPM (), (26)
P,‘,;ﬁ"”(m=2(—n”+—ﬁ(u+1)P;“">(y) , @7
(1+y)P,(,_"”(,LL)=——(%nl)(l—y)(l—i-y)P;‘L‘l’(u) ,
(28)
(1—#)P,<,1>—”<H)=—3‘"—:—”&511{*”(#) , 29)
(=Pt~ =D (4Pt . G0)

This set of relations allows any of the four solutions to
be written in terms of any other, and in particular the
third. The latter solution may in turn be easily related to
those given by Chandrasekhar (Ref. [7]): Let B=0 so
that a=«. Remembering that G'""(m,u) will be com-
patible with c, (kr) if m =n —1, the flux function associ-
ated with G'"V(m,u) is given by

v=(ar)c,,(ar)(1+u)(1—p)PV(u) . (31

The discussion at the end of Sec. I and the definition of P
following Eq. (8), combined with the relation

[(B+1)T(2B+n)

CBu)= pB—1/2,8-1/2) , B0
A T T NT R R W, B
(32)
allow this set of solutions to be written in terms of
D (ar)
P’"=$C,i/2(y) i (33)

r3/2

Here D,, .3 ,,(ar) is a general cylinder function of order
n +3 and the C3/%(u) are the Gegenbauer or ultraspheri-
cal polynomials. The function P that generates the po-
loidal field is given by P=sin6P™. For B+0, the four
sets of solutions given in Eq. (24) are therefore seen to be
a simple generalization of Chandrasekhar’s results.

Other solutions appearing in the literature can also be
related to those given here. For example, consider the
case where a=+1, B=—1. (As has been shown, the
particular case chosen is irrelevant.) Then the flux func-
tion is, apart from an arbitrary multiplicative constant

Y=(kr)c,(kr)(1—p)P" " D(u) . (34)
The magnetic-field components are then given by Egs. (5),
(14), and (21) as

(n+1)

(1,—1)
n () bW

K
B,=~r—c,,(xr)

—(n—DPTV ()], (35
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B9=———‘u—K(1__ )P,(,l’_”(p,)[nc,,(xr)—(lcr)c,,_I(Kr)], (36)
r sin@
= K 2 2 201 __,,)2
B, rsinG{B +(kr)[c,(kr)]*(1—p)

X [P~ () P2 (37)

For c,(kr)=j,(kr), and n =1, the expression for 1 be-
comes

sinkr

Y= —coskr |sin0 . (38)

This is the form of the flux function given by Morikawa
[16] and also, without the imposition of the boundary
condition of a uniform external field, that given by Emets
and Zamidra (Ref. [9]). Both Morikawa and Emets and
Zamidra only give the lowest-order (n =1) solution.
Morikawa imposes the boundary condition of a perfectly
conducting spherical cavity and assumes that a is con-
stant, while Emets and Zamidra show that the constant B
in Eq. (20) can be interpreted to be proportional to an ax-
ial current. The solutions of Egs. (35)-(37) are then a

6 (rad)

FIG. 1. Contour plot of
V=rvV'm/2rJ, +1,,(r(1—p)P ()

for n =1 and 3.

7523

FIG. 2. Parametric plot of

V=rVa/2rd, o1 p(P(1— )PP~ V()

for n =1 as a function of » and z=r cos6. In the figure the con-
tours are for y==0.1,£0.3,+0.5. Note that =0 on the z axis.

generalization of the particular solutions given by these
authors.

The character of these solutions is illustrated in Fig. 1
for n=1,3. There, the surfaces of constant ¢ are plotted
as a function of r and 0 (¢ being assumed constant). Irre-
gularities in the plot should be ignored since they merely
reflect limitations in the way the function was sampled
for plotting. Figure 2 shows the n =1 case for particular
values of ¢ as a function of z =r cosf and r. The magnet-
ic surfaces, outside the familiar central one, are toroids
with a bananalike cross section.

IV. SOLUTION IN CYLINDRICAL COORDINATES

Using the definitions of the field components in Eq. (6),
and following the same procedures as in the case of
spherical coordinates results in the three equations

B3, -+ 3=~ W), (39)
B,=fW), “0)
a=f'(¢) . (41)

If g(4) is defined as g(y)=—f(¥)f'(¢), a will again
satisfy Bernoulli’s equation with the solution given by Eq.
(17).

As before, Eq. (39) will apparently only separate if
g()= —«?y, yielding
()= - (1) + (= A =0 , “2)

I''(z)+A’T(z)=0 (43)
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where here y=®(r)['(z) and A? is again a separate con-
stant. Both equations are immediately solvable, and
apart from an arbitrary constant of integration, have the
solutions

®(r)=rD,[(k*—21H)""?r)] (44)
and
. sinAz
I'(z)= coshz (45)

where D, is a cylinder function of first order. Here,
while the constants of integration and the particular
cylinder function may be chosen to fit the boundary con-
ditions of the problem at hand, the order of the cylinder
function is fixed.

Defining ¥ =(k*—A?)!/2, Eqs. (6) and (40) give the field
components as

—COSAz
B, =AD\(yr) | Gnaz |- 46)
1 sinAz
B :7[D (yr)+ (ry)a(yr)Dl(yr)] coshz |’ 47)
i 21172
_ K p2, 2 , | sinAz
By= r B 417Dy (yr)] cosAz 48)

For the particular case D,(yr)=J(yr), B=0, and the
choice of cosAz in the expression for ¥, this is the “square
toroid” solution given by Furth, Levine, and Waniek
(Ref. [8)).

APPENDIX
To prove Eq. (25), consider the general relation
(1=p)P VP )+ (14 p) PP () =2P P ()

(A1)
|

(1+a+B+n),=(1+a+p+n)2+a+B+n)

If, in the last equation, a=fB=—1, k=2, and n is set
equal to n + 1, one obtains

DPL V() =tn(n + 1PN () . (A7

Combining this result with the differential equation, Eq.
(AS), proves Eq. (26).
The proof of Eq. (27) uses the two relations

L2n+a+B+2)(1—p)Plt B ()

=(n+a+1)P*P(u)—(n +1DP%B (n) (AB)
and
12n+a+B+2)(1+p)Pi*B+(p)
=(n+B+ 1P *P(uw)+(n +1P%E (u)  (A9)

with a=p= —1 to obtain the two equations
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Setting =0, B=—1 and a=—1, =0 results in two
equations which, when added, yield

Py )+ (1P () + 2P0 )
—2[P% D)+ P, 0(u)]=0

(1—p)
(A2)

where P.*%(u) are the Legendre polynomials P,(u). To
show that the last term in brackets is equivalent to P, (p),
consider the two relations [17]

(a+B+2n)P=P V()= (a+B+n)Py*P(u)

+(a+n)P\*R(u) (A3
and
(a+B+2n)P "Pu)=(a+B+n)Py*P(u)
—(B+n)P@B(u) . (A4)

Setting a=B=0 results in two relations which, when
combined, give the desired result P\%~ V(u)+ P\~ 10(u)
=P%9u)=P,(u), which proves Eq. (25).

In Eq. (26), the polynomial P.7} " (u) satisfies the

differential equation,

n(n+1)

D LD+ 2 Py (w)=0 (AS)
1—p?
where D"=d"/du". Now in general,
D*P{@P(u)=2"k14+a+B+n), P2 B ),
0<k=<n (A6)
where

(l+a+p+n+k—1).

n(1—=p)P®  V(w)=nP, ") —(n + DP T V(w)
(A10)

and

n(14+p)P 20w =nP " ")+ (n + P Vi) .
(A11)

Subtracting Eq. (A10) from Eq. (A11),

Py )= S P )

—(1=p)P> ()] . (A12)

Consider the bracketed term on the right-hand side of
Eq. (A12). By setting a=—1, B=0and a=0, B=—11in
Eq. (A1), two equations are obtained which, when sub-
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tracted, result in

PR — PO D(p)=1[ —2uP{®(u)
+(1+p)P ()
—(1—p)PP D)} . (A13)

The bracketed term of Eq. (A12) can be expanded and
combined with Eq. (A13) to give

—1.— n
PR =5

‘m;[(l-i-,u)P,(,—l’l)(/.L)

—(1—wPE V)] . (Al4)

Equation (27) is then obtained from Eq. (A14) by using
Eq. (25), which was proved earlier.

Equations (28)-(30) are obtained by substitution be-
tween Egs. (25), (26), and (27).
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