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For values of r greater than the coherence length &, the axially symmetric Ginzburg-Landau equations
are solved for a flux vortex carrying a longitudinal current. The field is not force free, and it is shown
that there are no regular solutions to the force-free field equations that decay exponentially with increas-
ing penetration into a superconductor. It is also shown, in this approximation, that in the case of a vor-
tex carrying a nonzero longitudinal current, the Ginzburg-Landau equations are equivalent to the radial
pressure-balance equilibrium relation in ideal magnetohydrodynamics. The techniques developed in this
field to address stability issues can then be used to answer questions related to vortex stability.

INTRODUCTION

The solution to the Ginzburg-Landau equations found
by Abrikosov! has been used extensively to study the
properties of the flux lattice of type-II superconductors
when the transport current and an applied magnetic field
are directed perpendicular to each other. When this solu-
tion is used to study the case where the current is parallel
to the field, the behavior of the vortices is not well under-
stood. The observation of a longitudinal paramagnetic
moment suggests, however, that the current flows in a
helical path. Various theoretical models have been dis-
cussed in the reviews by Campbell and Evetts’ and
Timms and Walmsley.?

Because longitudinal critical currents are found to be
significantly larger than those in a transverse field,*
Bergeron® has suggested that the current adopts a force-
free configuration. For this to be true, the configuration
of the flux-line lattice itself must be force free and the
current must flow along the helical flux lines, parallel to
the magnetic field of the Abrikosov vortices. Since the
Lorentz force between the current and the field of the
vortex would then vanish, it is often said that such a
configuration is force free. It is shown here that, for
values of r >§&, the Ginzburg-Landau equations do not
have a force-free solution for the vortex itself (the
configuration of the flux line lattice is a separate ques-
tion), and that there are no regular solutions to the
force-free field equations that decay exponentially with
increasing distance into a superconductor in contradis-
tinction to the London theory.

The Ginzburg-Landau equations do, however, have a
twisted field solution that is not force free and which
could be used as a model for a vortex carrying a longitu-
dinal current. For the De Gennes—Matricon® model of a
vortex where there is a normal core of radius approxi-
mately equal to &, most of this current would flow in the
region £ <r <A where the De Gennes—Matricon model
assumes the vortex of superconducting electrons flow
around the normal state core, and the fields and currents
obey the London equations.

It is also shown that for a vortex carrying a nonzero
longitudinal current, the Ginzburg-Landau equations (for
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r > &) in cylindrical coordinates are equivalent to the con-
dition for pressure equilibrium in ideal magnetohydro-
dynamics. The solution to these equations is known to
exhibit a corkscrew instability due to the twisting of the
magnetic field. Vortex instability was predicted by
Clem,” who also noticed the analogy to magnetohydro-
dynamics. However, the vortex model used by him did
not itself have a twisting field.®

THE GINZBURG-LANDAU EQUATIONS

The dimensionless form of the Ginzburg-Landau equa-
tions is’

—VX(VX A)=¢]? A+ Lik " (P*Vy—yVy*),
(1)
(ik 'V+ AY=y¢(1—[¢[?) .

By letting the order parameter be = fe'®, the first equa-
tion reduces to

—VX(VX A)=fYA—k'Vg). )

Abrikosov introduces a scalar quantity Q which is the
magnitude of the vector A—KﬂV(p. Consider instead,
the introduction of a vector quantity Q= A—«k 'Veg.
Since VX Q=V X A=B, Eq. (2) can be written as

—VX(VXQ)=fWQ. (3)

In cylindrical coordinates, Eq. (3) results in two equa-
tions,

d|1ld —f2
dr | r dr(rQ‘b) fQs
4)
1d |42 |
rar | dr /e

which are valid when the flux vortices are sufficiently
separated to have axial symmetry.

Note that Q= A —« Vg is not a true gauge transfor-
mation since @ is a phase.!® Consider the line integral of
Q around a closed path T,
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$ Qal=¢ Adl—x"'$ Vol . (5)

Since @ is a multivalued function, it can be made single
valued by introducing a cut defined by, for example,
¢=0. Now for any two points p, and p,, the difference
in the value of the scalar function ¢ is

Py
@9, =%, = [, Vordl .

If the path of integration is closed, but does not cross the
cut needed to make ¢ single valued, the integral will van-
ish by Stokes’ theorem.'! Now as r — w0, Q—0, so that
if the contour I is chosen at infinity, and the path of in-
tegration I' crosses the cut,

¢FV¢-dl =K¢I_A-dl .

The last integral is the total flux through I'. Since @ is a
phase, it must change by 27 each time I is traversed.
Thus, the integral A dI must be a multiple n of a fixed

quantity of flux ®,= 27T/K so that ﬁ Vo-dl=nkd, It

can be shown'? that the value of this 1r§tegra1 while it de-
pends on n, is not dependent on the particular path T'.
Thus, for an arbitrary path T', Eq. (5) can be written as
¢ Q-dl=®—nd,, where P is the magnetic flux through
the surface bounded by the contour I'. n is the winding
number which can be defined, for example, when the path
I' is contained in the plane z =0 as

Zvdg Q
27r f

The winding number 7 is also known as the topological
charge.

Following Abrikosov, if @ is set equal to the azimuthal
coordinate ¢, the second of Egs. (1) becomes

ol ar

2 _ 2
s +Q*f =f(1—f?) )

where, despite the formal similarity, this differs from the
usual result since here 9Q?=Q3 + Q7. In what follows, at-
tention will be restricted to values of r sufficiently far
from the vortex core (» >« ! in Ginzburg-Landau units)
so that f ~1, and Eq. (6) will play no further role.

With f =1 and the boundary condition that Q—0 as
r— oo, Egs. (4) have the solutions

Qd) ](r »
Q,=cK,(r),

)

where the K, are modified Bessel functions of the second
kind, c is a constant, and the constant associated with Q ¢
has been set equal to unity so that the solution will
reduce to Abrikosov’s for ¢ =0. The magnetic field and
current associated with Q= {0,K(r),cK(r)} are readily
calculated to be!3

B={0,cK,(r),—Ky(r)} ,
J:[O, _Kl(r)’

(8)
—cKy(r)} .

It is easily verified that Eqgs. (8) do not satisfy, for real

values of a, the force-free relation'
VXB=aB, 9

where a is, in general, a scalar function of position. The
force-free relation given by Eq. (9) is a direct consequence
of the requirement that, within some region, the magnetic
field be everywhere parallel to the direction of the current
flow; i.e., satisfy the condition that (VXH)XH=0.

Note that the cosine of the angle between J and B
given by Egs. (8) is

c{[Ko(NP—[K (NP} /{[K (N P+ K1)
X {[Ko(P P+ K (n]}12,

so that using the relation

limK, (r)=

r—0

O(n) | =

1
2

it can be seen that J and B are perpendicular for values of
r large compared to unity and become parallel or antipar-
allel (depending on the sign of ¢) for small values of r.
The solution is not valid, of course, for values of r <§&.
The variation in currents and fields over this region,
where Egs. (4) and (6) must apply with f =f(r), must be
such as to match the axial field at » =0 and the solution
given by Egs. (8) for r > &.

FORCE-FREE FIELDS

For  axially symmetric fields such that
B={0,B,(r),B,(r)}, the force-free condition of Eq. (9)
can be written in the form

BZ
2 (B3+B2)+2—2=0 (10
dr r

with a being given by

1 14d(rBy)

a(r):-B—7*——dr— . (11)

z

Any function g (r)=B} + B2 such that g (r)>0, g'(r) <0,
and d[r’g(r)]/dr=>0 w1ll give a nonsingular solution of
Eq. (10). For distances r greater than the coherence
length, the London equations are expected to govern the
fields and currents and the field would have to decay ex-
ponentially if a force-free model of a vortex was possible
to construct.

If one attempts to use the relations given by Egs. (10)
and (11) to find a force-free configuration for a flux vor-
tex, with the condition that the magnitude of the field de-
cay exponentially with the distance r into the supercon-
ductor, the last inequality given above is violated for
some value of . For example, let g(r)=B,e ~’’*. Equa-
tion (10) is easily solved to give

172
By=Bge "/t
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B, is imaginary for r > A, and a(r) is singular at r =A.
For r > A,
d[rg(r)] r
———=1——-<0.
dr A

Thus a nonsingular force-free model for a vortex, where
the magnitude of the field decays exponentially for dis-
tances greater than the coherence length, is not possible.

THE GINZBURG-LANDAU EQUATIONS
AND IDEAL MAGNETOHYDRODYNAMICS

The fact that the Ginzburg-Landau equations are
equivalent to ideal-fluid hydrodynamics and London elec-
trodynamics was shown by Frohlich.'> This can be
demonstrated here by rewriting Egs. (4) with f =1 as

Q= dar’ = v dr
Multiplying the first of these equations by H,, the second
by H 4, and subtracting the second from the first,

(13)

2

B
¢ +=4=B,0,~B,0, . (14)

dr

B} +B}
2

The right-hand side of this equation is just the T com-
ponent of QXB, the only component that does not van-
ish. From the vector relation

(VXH)XH=(H-VH—-V

H? ]
it is readily seen that Q XB=—JXB. If BXQ is viewed
as the gradient of a pressure P, Eq. (14) can be written as

2 2
B +B]
2

By _

r

4

P+
dr

0. (15)

For the solutions for Q and B given by Egs. (7) and (8)
the T component of Q X B may be calculated to be

(14c2) dB;

2 o (16)

T(QXB)=—(1+cHK | (rKy(r)=

Pis then

2
P=— il—“;—c—)Bj . 17
Note that VP is in the positive T direction. Equation (15)
is the radial pressure-balance equilibrium relation in ideal
magneto-hydrodynamics.!® For ¢ =0, the latter is
satisfied identically.
There are some general constraints implied by the form
given by Eq. (14) for Egs. (4). If one defines

B}+B?

18
> , (18)

g(r)=P+

Eq. (15) can be written as

d
2 = — —
B rdrg(r) . (19)
From Egs. (18) and (19),
BZZ=2[g(r)——P]+r%g(r) . (20)
Thus, B, and B, will be real if (d /dr)g (r) <0 and if
2
d[rgn] >2rP .
dr

While the solution given by Egs. (8) and (17) satisfy both
these inequalities as well as g (#) >0, it is also true that

d[r’g(r)]
dr

However, unlike the case of a force-free field, the solution
given by Egs. (8) is regular for all values of r.

The equivalency of the Ginzburg-Landau equations for
a vortex carrying a nonzero longitudinal current and the
radial pressure-balance equilibrium relation in ideal mag-
netohydrodynamics means that the full panoply of tech-
niques developed in the latter field are available to ad-
dress the question of vortex stability. And, while in gen-
eral this is a difficult problem, it is clear that a vortex will
be subject to a kink instability for very small amounts of
twisting. The vortex can be expected to become unsta-
ble!” at a value of axial current such that

(By) A

=27,

(B,) L

=0.

where A is the radius of a vortex (approximately the
penetration depth) and L the length of the vortex.

SUMMARY

By introducing a vector quantity Q= A—« Vg, it is
possible to solve the Ginzburg-Landau equations for a
twisted field that is not force free [Egs. (8)] and which
could be useful as a model of a vortex carrying a longitu-
dinal current. When this current vanishes, the solution
reduces to that of Abrikosov. Because of the equivalency
of the Ginzburg-Landau equations for a vortex carrying a
nonzero longitudinal current with the radial pressure-
balance equilibrium relation in ideal magnetohydro-
dynamics, it is clear that the vortex will become unstable
with respect to a kink instability for very small amounts
of twisting.
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