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ABSTRACT 
 

Modern developments in nonequilibrium thermodynamics have significant 
implications for the origins of life.  The reasons for this are closely related 
to a generalized version of the second law of thermodynamics recently 
found for entropy production during irreversible evolution of a given system 
such as self-replicating RNA.  This paper is intended to serve as an 
introduction to these developments. 
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Introduction 
 

Statistical physics and non-equilibrium thermodynamics, and their relation to biological systems, 

have long been considered a part of the physics corpus albeit not exclusively.  See for example the 

book Statistical Physics by Landau and Lifshitz.1  And from a more basic and philosophic point 

of view, one can date the major contributions of physicists to biology back to at least the last fifty 

years of the 20th century, and in particular to Erwin Schrödinger’s book What is Life?.2  Many 

research papers relating physics to the origins of life and to biology in general were also published 

during this period. 

 

This paper is intended to be a limited introduction to the importance of non-equilibrium 

thermodynamics and a generalized form of the second law, which have great significance for the 

origin of life.  It is not intended to be a comprehensive review of the literature, and the reader is 

encouraged to consult the original publications for additional detail and context.  It is hoped that 

this paper will facilitate entry into this literature. 

 

It is generally believed that life began with the evolution of self-replicating polynucleotides.  Ever 

since the paper by Gilbert3 that discussed the possibility that catalytic RNA enzymes or ribozymes 

could be involved in the evolution of life, and incidentally coined the term the “RNA world”, RNA 

has been the favorite molecule.  Gilbert’s News and Views paper addressed the previous week’s 

News and Views paper by Westheimer4.  The original discovery of the enzymatic activities of RNA 

was by Cech5.  In 2009, Lincoln and Joyce6 showed the self-sustained replication of two ribozymes 

that catalyze each other’s synthesis.  These cross-replicating ribozymes grew exponentially in the 

absence of proteins or other biological materials. 

 

For an RNA world to exist, there must be some way for RNA to form on the early earth.  How 

these nucleotides could have formed concurrently under the geophysical constraints of the early 

Earth was an unsolved chemical mystery before Becker, et al.7 published their paper “Unified 

prebiotic plausible synthesis of pyrimidine and purine RNA ribonucleotides” in 2019.  RNA 

molecules are composed of purine and pyrimidine nucleotides.  Becker, et al. found a reaction 

network under which both nucleotides could simultaneously form when driven by wet-dry cycles.  



 3 

The chemical reactions involved are very complex, but Hud and Fialho8 gave a relatively simple 

summary of them, which can be outlined as shown in Figure 1.  

  

 
Figure 1.  A simplified reaction network for the simultaneous formation of purine and pyrimidine 
nucleosides.  When a mixture of the sugar ribose and non-natural nucleobases are subjected to wet-dry 
cycles, intermediate molecules are formed that can be converted to the natural nucleosides, which when 
phosphorylated give the natural nucleotides.   For a discussion of what “scrambled” means see the article 
by Hud and Fialho, which supplied the basis for this figure.  They used the term to designate the 
precursor formed by Becker, et al., which they called a “scrambled” pyrimidine nucleobase. 

 

The geochemical conditions in the current work of Becker, et al. is compatible with their previous 

synthesis of the purine nucleosides9.  The wet-dry cycles allow the dried reactants to coalesce into 

a concentrated state where their joining through covalent bond formation with the release of water 

molecules becomes thermodynamically favorable.  What “thermodynamically favorable” means 

is the subject of much of what follows. 

 

From a simplistic point of view, life appears to violate the second law of thermodynamics since 

ordered life forms have a lower entropy than their precursors.  Of course, this apparent violation 

vanishes when one realizes that life processes draw upon the free energy from the surroundings so 

that total entropy increases.  In terms of the origin of life, it has been known for some time that 

matter can spontaneously organize itself if the Gibbs free energy for the process is negative or if 

an external source of “activation energy” is provided.  If this absorbed energy is dissipated after 

overcoming the activation barrier it is no longer available to drive the reverse process.  This 

irreversible phenomenon is called “driven self-assembly”.  Explaining how this works for a 

macroscopic system requires the introduction of a generalized form of the second law of 

thermodynamics. 
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A short Appendix discusses some of the terminology, definitions, and confusions associated with 

thermodynamic quantities. 

 

Nonequilibrium States 
A system may be maintained in a nonequilibrium state by a flow of energy.  If the state is time 

independent, macroscopic observables will have constant nonequilibrium values.  The example 

often given is a constant electrical current through a resistor with a steady rate of heat generation.  

Such dissipative structures can be formed and maintained by irreversible processes that 

continuously increase entropy.10,11  In a linear regime, small deviations in the forces driving a flow 

(such as the heat flow on the resistor example) will lead to the flow being a linear function of the 

forces driving the flow.  But a system that is not in thermodynamic equilibrium need not be in a 

stationary, time independent state since systems that are far from equilibrium can become 

dependent on nonlinear empirical relationships; i.e., a phenomenological model. 

 

Systems of identical non-interacting components in thermodynamic equilibrium can be described 

by the Boltzmann distribution (also known as the Gibbs distribution), which gives the equilibrium 

probability distribution of different energy states of a system as a function of the state’s energy 

and the temperature of the system.  It has the general form 𝑃! ∝ exp[−𝐸!/𝑘"𝑇], where kB is the 

Boltzmann constant, Pi is the probability that the system is in the state i and Ei is the energy of the 

state.  Thus, if the states j and k have energies Ei and Ej, the relative probability is 

 
𝑃!
𝑃#
= exp .

𝐸# − 𝐸!
𝑘"𝑇

/. 

                   (1) 

Moreover, systems in thermodynamic equilibrium satisfy the principle of detailed balance, which 

is equivalent to microscopic reversibility.   

 

If the system is driven far from equilibrium into the nonlinear regime, the Boltzmann distribution 

is no longer valid since the thermodynamic flows are no longer linear functions of the 
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thermodynamic forces.  Far from equilibrium states can evolve into one of many new, highly 

organized states also known as dissipative structures.   

 

Microstates and Reversibility 
The statistical behavior of nonequilibrium systems require the introduction of comparisons 

between the dynamical trajectories of the components of the system rather than the local properties 

of individual microstates at one moment of time.12  If the dynamics of a system are stochastic and 

Markovian (meaning a sequence of events where the probability of each event depends only on 

the state of the previous event), one can require that the dynamics follow the microscopically 

reversible condition13 

 

𝑃[𝑥(+𝑡)|𝜆(+𝑡)]
𝑃[�̅�(−𝑡)|�̅�(−𝑡)]

= 𝑒𝑥𝑝{−𝛽	𝑄[𝑥(+𝑡), 𝜆(+𝑡)]}, 

                   (2) 

where b  = 1/kBT , the state of the system is given by the function x, representing all dynamical 

uncontrolled degrees of freedom, while l is a controlled time-dependent parameter, which depends 

on the type of system being considered.   

 

In Eq. (2), 𝑃[𝑥(+𝑡)|𝜆(+𝑡)] is the probability of following the path 𝑥(+𝑡) through phase space 

and the denominator is the corresponding time-reversed path.   This notation for the time-reversed 

path is a consequence of changing the time origin so that 𝑡 ∈ {−𝜏, 𝜏}, where t could be infinite.  

The overbar indicates that quantities odd under time reversal also change sign.  Q is the amount of 

energy in the form of heat transferred to the system from the heat bath.  Q is a function of the phase 

space path and odd under time reversal; i.e., 𝑄[𝑥(+𝑡), 𝜆(+𝑡)] = −	𝑄[�̅�(−𝑡), �̅�(−𝑡)]. 

 

Eq. (2) is microscopically reversible; it relates the probability of a given path to its reverse path.  

Note that this is not the same as the principle of detailed balance, which refers to the probabilities 

of changing states independent of path.  This distinction is important because Eq. (2) holds when 

the system is driven by an external time varying force field.  England14 has used this equation to 

derive a generalization of the second law of thermodynamics that is important for many far from 
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equilibrium thermodynamic systems.  It applies to the macroscopic transition between complex 

course-grained states. 

 

Dissipative Adaptation 
To be consistent with England’s notation and make it easier to read his paper, we know change 

notation so that Eq. (2) can be rewritten as 

 

𝜋[𝛾]
𝜋∗(𝛾∗) = 			𝑒𝑥𝑝 .

∆𝑄(𝛾)
𝑘𝑇 /	, 

                   (3) 

where 𝛾 is a microtrajectory and the “*” indicates time-reversed.   Here, it is assumed that ∆𝑄(𝛾) 

is the sum of the internal energy change of the system when traversing the path g and the work 

applied to the system by an external field; i.e., ∆𝑄(𝛾) = ∆𝐸 +𝑊. 

 

Let i, j, and k represent different possible configurations of a system composed of distinct 

components (such as particles).  Equation (3) then becomes 

 
𝜋[𝑖 → 𝑗]

𝜋∗(𝑗∗ → 𝑖∗) = 			𝑒𝑥𝑝 .
∆𝑄(𝑖 → 𝑗)

𝑘𝑇 /	. 

                   (4) 

Using Eq. (4) also for the trajectory 𝑖 → 𝑘 and taking the ratio of the equations for the transition 
𝑖 → 𝑗 and 𝑖 → 𝑘, that is, 
 

𝜋[𝑖 → 𝑗]
𝜋∗(𝑗∗ → 𝑖∗)
𝜋[𝑖 → 𝑘]

𝜋∗(𝑘∗ → 𝑖∗)

= 	
𝑒𝑥𝑝 .∆𝑄(𝑖 → 𝑗)

𝑘𝑇 /

𝑒𝑥𝑝 .∆𝑄(𝑖 → 𝑘)
𝑘𝑇 /

, 

                   (5) 

with the substitution ∆𝑄(𝛾) = ∆𝐸 +𝑊, after some algebra Eq. (5) will yield 
 

𝜋[𝑖 → 𝑗]
𝜋[𝑖 → 𝑘] = 	𝑒𝑥𝑝 .

−∆𝐸(𝑗 → 𝑘)
𝑘𝑇 /

𝜋∗(𝑗∗ → 𝑖∗)
𝜋∗(𝑘∗ → 𝑖∗)

𝑒𝑥𝑝 .−𝑊(𝑖 → 𝑘)
𝑘𝑇 /

𝑒𝑥𝑝 .−𝑊(𝑖 → 𝑗)
𝑘𝑇 /

. 

                   (6) 
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The first term on the right-hand-side of Eq. (6) comes from the term 	𝑒𝑥𝑝 J∆&(!→#)*∆&(!→+)
+,

K 

encountered when doing the algebra.  The energy level relationships of Eq. (6) are shown in the 

figure below 

 

 
 
From this figure one can see that ∆𝐸(𝑖 → 𝑗) − ∆𝐸(𝑖 → 𝑘) = ∆𝐸(𝑗 → 𝑘). 
 
To explain the concept of dissipative adaptation, England assumes that the states have the same 

energy so that the first term on the right-hand side of Eq. (6) is unity, and averages over all 

microtrajectories with fixed endpoints.  With these assumptions, Eq. (6) becomes 

 

𝜋[𝑖 → 𝑗]
𝜋[𝑖 → 𝑘] = 	

𝜋∗(𝑗∗ → 𝑖∗)
𝜋∗(𝑘∗ → 𝑖∗)

〈𝑒𝑥𝑝 −𝑊(𝑖 → 𝑘)
𝑘𝑇 〉

〈𝑒𝑥𝑝 −𝑊(𝑖 → 𝑗)
𝑘𝑇 〉

. 

                  (7) 

The brackets 〈	. . . 〉 indicate the average over microtrajectories.  Note that even though the states 

now have the same energy, the left-hand side of Eq. (7) could differ from unity since not all states 

of the system are equally accessible in a finite time. 

 

For different oscillatory external forces, known as the “drive”, different configurations of the 

system will absorb work from the external forces at different rates.  A given system configuration 

could then surmount “activation barriers” to transition to states that would not be accessible 

through thermal fluctuations alone.  This is shown in Fig. 2 for the general case where the energies 

of the states are not identical. 
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Figure 2.  Transition through a system configuration activation barrier.  DG‡ = GS‡ - Gi, where Gi oscillates 
when driven.  For the case where the energies of the states i and j are equal, Gi = Gj.  The energy absorbed 
from the drive is radiated as heat in the transition from S‡ to state j.  The symbol used to indicate heat radiation 
corresponds to the full spectrum of the heat being radiated.  This figure should be compared to Fig. A1 in the 
Appendix for the activation energy of a chemical reaction. 

 

The point of all this is that some of the randomly changing system configurations will be better 

able to absorb work from the drive than others and this leads to a mostly one directional change in 

configurations—due to the loss of the radiated heat energy—to those better able to absorb and 

dissipate the energy absorbed from the drive.  As put by England, the structure will appear to self-

organize into a state that is well adapted to the environmental conditions set by the drive.  This, he 

calls the phenomenon of “dissipative adaptation”.   

 

On the other hand, the concept of “dissipative adaptation” is still somewhat controversial with 
regard to finding a clear link between Eq. (7) and actual physical systems.  Equation (7) tells us 
that trajectories that absorb work will be favored over their reversed trajectories but this does not 
necessarily imply that such a trajectory “will be kinetically favored over completely different 
routes through configuration space that start from the same point.”.  Kachman, Owen, and England 
have shown using a simulated “toy chemical” reaction that “elevated work absorption during the 
system’s history has enabled irreversible configurational change, except in this case, the outcome 
states are less capable of absorbing work than their predecessors.”15 
 

In this vein, Kondepudi and Prigogine in their 2015 book Modern Thermodynamics (Ref. 8) 

introduce the concept of “structural instability” that can occur when a new chemical species is 
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introduced into a nonequilibrium chemical system that could destabilize the system so that it 

evolves into a new state.  They liken this to Darwinian evolution at the molecular level.   Thus, in 

their words “we see instability, fluctuation and evolution to organized states as a general 

nonequilibrium process whose most spectacular manifestation is the evolution of life.”   

 

 

Macroscopic Irreversibility 
The relationship between microscopic irreversibility and entropy production has thermodynamic 

effects on far from equilibrium macroscopic processes and in particular for biological self-

replication (to be discussed in the next section).  England derived a generalized form of the second 

law of thermodynamics that can be written as  

 

𝛽〈∆𝑄〉-→-- + 𝑙𝑛 .
𝜋(𝐼𝐼 → 𝐼)
𝜋(𝐼 → 𝐼𝐼)/ + ∆𝑆!./ ≥ 0. 

                  (8) 

The derivation of this equation begins with Eq. (3) with 𝛾 → 𝑥(𝑡), where 0 ≤ 𝑡 ≤ 𝜏.  Taking the 

natural logarithm of the resulting equation gives 

 

𝛽∆𝑄 = 𝑙𝑛 U
𝜋[𝑥(𝑡)]

𝜋[𝑥(𝜏 − 𝑡)]V, 

                  (9) 

an equation concerned with microscopic irreversibility.  

 

Suppose there is a coarse-grained observable, I, which can be associated with a probability 

distribution p(i|I), the probability that it is in a microstate i.  If there is a second course-grained 

observation of the system after a time interval t designated by II,  p(j|II) is defined as the 

probability that the macrostate II (that evolved from macrostate I after a period of time t ) is in the 

microstate j.   Note that the macrostates I and II are ensembles of paths. 

 

Crucially, these probability functions allow a macroscopic definition of irreversibility: 
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𝜋(𝐼 → 𝐼𝐼) = W 𝑑𝑗	W 𝑑𝑖	𝑝(𝑖|𝐼)
---

𝜋(𝑖 → 𝑗) 

𝜋(𝐼𝐼 → 𝐼) = W 𝑑𝑖	W 𝑑𝑗	𝑝(𝑗|𝐼𝐼)
---

𝜋(𝑗 → 𝑖). 

                 (10) 

Similar to what was done in Eq. (5), taking the ratio of  0(--→-)
0(-→--)

  gives, after some algebra,	 

 
𝜋(𝐼𝐼 → 𝐼)
𝜋(𝐼 → 𝐼𝐼) =

〈		〈𝑒!"	∆%!"〉&→( exp	[𝑙𝑛 1
𝑝(𝑖|𝐼)
𝑝(𝑗|𝐼𝐼)67 		〉)→)) . 

                 (11) 

The first averaging bracket on the right-hand side is the average of all paths from 𝑖 ∈ 𝐼 to 𝑗 ∈ 𝐼𝐼, 

each path being weighted by its likelihood (the second averaging bracket).       

 

The next step is to introduce the Shannon entropy 𝑆 = −∑ 𝑝! 	𝑙𝑛!	 𝑝! so that an expression for the 

internal entropy change for the transition between the ensembles 𝐼 → 𝐼𝐼 can be written.   England 

uses units such that the Boltzmann constant is unity.  This results in ∆𝑆!./ = 𝑆-- − 𝑆- and after 

some additional algebra he obtains the generalization of the second law of thermodynamics given 

by Eq. (8); that is, 

 

𝛽〈∆𝑄〉-→-- + 𝑙𝑛 .
𝜋(𝐼𝐼 → 𝐼)
𝜋(𝐼 → 𝐼𝐼)/ + ∆𝑆!./ ≥ 0. 

                 (12) 

 

The first term in Eq. (12) is the entropy change of the heat bath and the entropy generated by 

second term vanishes if 𝜋(𝐼𝐼 → 𝐼) = 𝜋(𝐼 → 𝐼𝐼), which would result in the usual second law of 

thermodynamics where 𝛽〈∆𝑄〉-→-- + ∆𝑆!./ ≥ 0 because the average entropy change of the 

universe must be greater than or equal to zero. 

 

One might question whether the use of the Shannon entropy is legitimate.  The Boltzmann 

distribution implies the usual thermodynamic definition of entropy.  The Gibbs-Shannon entropy 

given by 𝑆 = −𝑘" ∑ 𝑝! 	𝑙𝑛!	 𝑝! is equivalent to the thermodynamic definition of entropy only for 
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what is known as the generalized Boltzmann distribution,16 which is valid for all Markovian 

systems even those not in thermodynamic equilibrium.  The generalized Boltzmann distribution 

itself was defined by Lin17 using an analogy based on electronics to give an explanation of the 

concept.  Given a thermodynamic system with m + n generalized forces and coordinates, Xiang, 

et al. write the probability density function 𝑃𝑟(𝜔\\⃗ 	) of the microstate 𝜔\\⃗  for the generalized 

Boltzmann distribution as 

 

𝑃𝑟(𝜔\\⃗ 	) ∝ 𝑒𝑥𝑝 ^_
𝑋2𝑥2

(3444⃗ )

𝑘"𝑇

.

267

−
𝐸(3444⃗ )

𝑘"𝑇
a, 

                 (13) 

where the 𝑋2 are generalized forces and E and xh are random variables, and Xiang, et al. use the 

vector notation to designate a microstate, as in 𝜔\\⃗ .  If the generalized forces vanish, Eq. (13) reduces 

to the usual Boltzmann distribution. 

 

The work of Xiang, et al. tells us is that for stable, non-equilibrium steady state systems, the 

entropy cannot be described by the Gibbs-Shannon entropy unless their distribution of states is 

given by the generalized Boltzmann distribution given in Eq. (13).   

 

Since the systems considered above are Markovian, the use of the Shannon entropy there is indeed 

legitimate. 

 

 

Replicating Systems and the Generalized Second Law of Thermodynamics 
England has used self-replicating systems to illustrate the use of the generalized second law.  

Consider 𝑛(𝑡 = 0) ≫ 1 for n self-replicating molecules at an inverse temperature b.  They would 

have an exponential growth given by 

𝑛(𝑡) = 𝑛(0)𝑒(8*9)/ , 

                 (14) 

where g determines the growth rate and d the decay rate. 
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The probability that in a time dt one particular replicator associated with 𝜋(𝐼 → 𝐼𝐼) would replicate 

would be given by gdt and its decay probability 𝜋(𝐼𝐼 → 𝐼) would be d dt.  Imposing the generalized 

second law of thermodynamics yields, 

∆𝑆/:/ = 𝛽∆𝑞 + ∆𝑆!./ ≥ 𝑙𝑛 J
𝑔
𝛿K. 

                 (15) 

Note that if g > d, so that there is net growth, the total entropy associated with self-replication will 

have a positive lower bound.   

 

This can be seen by setting n(0) = 1 in Eq. (14) and finding that the doubling time is proportional 

to 1/(g – d).  Since the only requirement is that g > d , the doubling time can be made arbitrarily 

short.  On the other hand, a very small value of for ∆𝑆/:/ can be obtained by making the difference 

between g and d very small, but  ∆𝑆/:/ will nonetheless be positive.  It is equal to zero only for 

g = d ; i.e., when there is no net growth. 

 

Two conclusions are readily apparent: (1) The growth rate of a self-replicator depends on its 

internal entropy (∆𝑆!./), its durability (1/ d), and the heat (Dq) dissipated into the surrounding heat 

bath in the process of replication; and (2), heat must be generated from energy stored in the 

reactants or work done on the system by a time varying external driving field.    

 

 

Implications for the Origin of Life 
Using the RNA molecule again as an example, how purine and pyrimidine nucleosides could have 

formed together under early Earth geophysical constraints was, as mentioned in the Introduction, 

until recently an unsolved chemical problem.  From a global perspective, the resolution of this 

problem involved far from equilibrium thermodynamics—in this case where the system was driven 

by wet-dry cycles; it is this external forcing that made the formation of these nucleosides 

thermodynamically favorable.   

 

A very interesting mechanism has been proposed by K. Michaelian18 for the replication of RNA 

and DNA molecules without the need for enzymes.  He proposed that UV light dissipation and 
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diurnal temperature cycling of the Archean sea-surface can lead to such replication.  It is based on 

what Michaelian calls a non-equilibrium thermodynamic imperative for producing RNA and DNA 

due to the great entropy producing potential of these molecules under the initial conditions of the 

primitive Earth.  

 

While the idea that far from equilibrium thermodynamics is fundamental to the origin of life 

remains somewhat controversial, the case is quite strong for this point of view.  There is also a 

simulated toy chemical model whose behavior is consistent with the idea of far from equilibrium 

self-organization.19   

 

General chemistry tells us that the free energy change in a reaction is governed by the equilibrium 

constant. Furthermore, while the reaction rate can be changed by enzymes which do not alter the 

equilibrium, the change in free energy is independent of the path or the molecular mechanism of 

the transformation.  It is clear that this is not the case for nonequilibrium thermodynamics “whose 

most spectacular manifestation is the evolution of life”.   

 

Our Earth formed some 4.5 billion years ago and there is strong evidence that life appeared 700 

million to 1 billion years later; that is, about 3.8 billion years ago.  Far from equilibrium nonlinear 

thermodynamics in the presence of external drives could help explain this very rapid origin of life.  

Because the length of the day was only around seven or so hours long 3.8 billion years ago, the 

tides would be far higher than today and there would be strong diurnal forces that could play the 

role of an external drive including ultraviolet radiation, which would be far more intense than 

today, as pointed out by Michaelian, since there was little if any oxygen in the atmosphere and 

therefore no ozone layer to block the UV.  

 

Life appears as a process ultimately founded on the ability of matter, governed by the principles 

of quantum mechanics, to form the molecules need for life to exist.  These molecules combine, 

overcoming the limits normally imposed by both unfavorable free energy constraints and 

activation energies, because of the properties of driven nonlinear thermodynamic systems.  Most 

stars have planets, and those with earthlike planets are all very likely to have life due to the 
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reduction in the activation energy for the formation of complex biomolecules arising from driven, 

far from equilibrium nonlinear thermodynamics. 
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APPENDIX 
 

There is much confusion in the literature about the term “energy” in physics, biology, and 

chemistry.  The definitions here are from the International Union of Pure and Applied Chemistry 

(IUPAC).  They define: 

 

U = the internal energy, U = Q + W, where Q designates heat and W work.  In parts of this 

paper, to be consistent with the referenced literature, the internal energy is designated as E 

and its change DE. 

 

A = Helmholtz energy function: A = U - TS, where S is the entropy and T the temperature.  

Note that in the earlier literature A was called the “free energy”. 

 

H = enthalpy: H = U + PV, where P is the pressure and V the volume. DH is the heat brought 

to a system at constant pressure. 

 

G = Gibbs energy function: G = H – TS.  Formerly called the “free energy” or “free 

enthalpy”.  It is the reversible useful work performed at constant temperature and pressure. 

 

An additional confusion is that in physics the “free energy” is the generally the Helmholtz energy 

and in biology and chemistry it is the Gibbs free energy.  In particular, in biochemistry, the Gibbs 

free energy is defined as  

 

∆𝐺 = ∆𝐺; + 𝑅𝑇	𝑙𝑛
[𝐶][𝐷]
[𝐴][𝐵], 

 

where, 𝐴 + 𝐵 ⇋ 𝐶 + 𝐷, and [A, B, C or D] are the molar concentrations (the “activities”) of the 

reactants.  ∆𝐺; is the Gibbs free energy for this reaction under “standard conditions”, meaning 
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when A, B, C, D are present at a concentration of 1.0 M, and the square brackets indicate 

concentrations. 

 

In biochemistry, it is generally assumed that the initial and final states of a reaction are equilibrium 

states so that ∆𝐺 = 𝐺<!.=> − 𝐺!.!/!=>.  ∆𝐺 is independent of the path or molecular mechanism of 

the transformation.  This is not the case for the nonequilibrium states discussed in the body of this 

paper.  A negative ∆𝐺 implies that the reaction can occur spontaneously.  The rate of a reaction 

depends on the “free energy of activation” ∆𝐺‡ as shown in the figure below. 

 

 

Figure A1.  The transition state S‡ has a higher energy than either the substrate S or product.  
The Gibbs free energy of activation, or “activation energy”, is 𝐺‡ = 𝐺"‡ − 𝐺", where 𝐺"‡ is the 
Gibbs free energy of the transition state S‡, and GS is the free energy of the substrate.   
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