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Abstract. The topology assumed by most authors for a spacelike hypersurface in a spacetime
containing a monopole is generally? — {0}; save for the surfacg? isolating the monopole, this

space is unbounded. For such a topology, a consistency relation of de Rham’s theorems shows
that a single isolated monopole cannot exist. Monopoles, with chargeif they exist at all,

must occur in pairs having opposite magnetic charge. An extension of de Rham’s theorems to
non-Abelian monopoles which are generalizations of Dirac monopoles (those characterized by
71(G), the fundamental group of the gauge gra@pis made using the definition of an ordered
integral of a path-dependent curvature over a surface. This integral is similar to that found
in the non-Abelian Stokes theorem. The implications of de Rham'’s theorems for non-Abelian
monopoles are shown to be similar to the Abelian case.

1. Introduction

This paper deals with an area that dates back to Dirac’'s 1948 paper [1] on magnetic
monopoles, and which introduced into the literature the concept of the Dirac ‘string’. Even

as late as 20 years ago, the reality of the Dirac string remained controyergial and

Yang [3] sought to eliminate the string associated with a magnetic monopole by dividing

spacetime into two or more overlapping regions, and defining a singularity-free vector
potential in each region. In the region of overlap, the vector potentials are related by a
gauge transformation. Yang [4] likened the problem of finding a singularity-free vector

potential for the monopole to that of defining singularity-free coordinates on a globe. This
‘patching’ approach amounts to defining a non-singular vector potential on a covering of
spacetime.

Because there is an equivalence between coverings and a special class of bundles, one
may also use the language of fibre bundles to discuss monopoles. However, the topology
must be more complex thaR3. If the space containing the monopole w&s$ instead of
R3—{0}, the bundle would be trivial sindg® is contractible and a bundle over a contractible
base space is trivial. One needs the topologR&f- {0} to define the non-trivial bundle
needed for the presence of a monopole. The only boundaR? ef {0} is S?, the surface
isolating the monopole. Becau® — {0} has the same topology &€, Dirac monopoles
correspond to non-trivial U1 bundles ov&. This implies that it is not possible to choose a
global cross section of the bundle, which is what leads to the necessity of patching the vector
potential. The topology oR® — {0} also has implications for the physics. For example, the
deletion of the origin from Minkowski space means that the resultant spacetime does not
have a Cauchy surface [5].

1 There is interesting literature that deals with the reality of the Dirac string. See, for example [2].
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Defining a non-singular vector potential on a covering of spacetime is not very
satisfactory because it does not alter the fact that a singularity-free vector potential does not
exist on the underlying spacetime itself. Indeed, the existence of such a potential is precluded
by the first of de Rham’s theorems, a statement of which is contained in appendix A. These
theorems are pertinent to the study of monopoles because of the presence of the boundary
S? in the spaceR® — {0} containing the monopole. de Rham’s theorems imply that if
monopoles of chargetm exist, a single-valued vector potential can only be defined by
treating the Dirac string as a real cut in spacetime. That the Dirac string has a definite
physical and observable significance, and is not merely a mathematical device, has also
been argued by Barut [2].

The discussion below begins by reformulating the Wu-Yang approach to Abelian
magnetic monopoles and applying de Rham’s theorems. Since the topological considerations
given above also apply to non-Abelian monopoles, the question naturally arises as to whether
there is a generalization of de Rham’s theorems so as to make them applicable to non-
Abelian fields. A possible generalization is given in the second part of the paper. Non-
Abelian monopoles use the concept of a principal bundle where the fibre coincides with the
structure group. If the structure group (or the base space) is contractible, the bundle will
be trivial. The topology ofR® — {0} is again necessary to have a non-trivial bundle.

What will be shown is that if, as must be done to obtain a non-trivial bundle, one
isolates monopoles—Abelian or non-Abelian—by excising their location in spacetime,
thereby isolating them by boundary components of the space, one cannot arbitrarily choose
monopole types and charges. The implications of the non-Abelian extension of de Rham’s
theorems are similar to those for the Abelian version. There are some differences, however,
which are discussed below.

2. A reformulation of Wu and Yang’s approach

The connection between de Rham’s theorems and monopoles is best illustrated by the
Abelian case. This and the following section are concerned only with Dirac monopoles
and serve to bring out the implications of the necessary choid®of {0} for the space
containing a monopole.

Consider the following twampen sets:

A =TR3—{(0,0) x (—o0, 0]}
B =TR3—{(0,0) x [0, 00)}.

SetA is all of R® with the negative;-axis and origin deleted, while sétis all of a second
copy of R? with the positivez-axis and origin deleted. The union of these two open sets

ist

@

AUB =R®—{0}. )
The monopole is assumed to be located at the origin. It will be useful for what follows to
note that

ANB=[R?-{0}]] xR )

meaning all ofR3 with the z-axis deleted, whileA — (AN B) C A andB — (AN B) C B
correspond respectively to the positive and negatrasxes without the origin.

f Itis interesting to note thak® — {0} is also definable as the intersection of two sétand B defined as follows.
Let A beS2 with the north pole deleted anBl be S® with the south pole deleted. Th€f = AUB andAN B is
S® with both the north and south poles deleted. Under a stereographic projettios, = R3 — {0}.
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To obtain a sphere within which most authors usually isolate a monopole, one would
delete a region about the origin< ¢, and with a slight change in the definition of sets
and B obtain

AUB=R3>—{r <e). 4)
Note that sinceR3 is unbounded,
A[AUB]=—-0{r <e}=—{r=¢} (5)

This boundary is clearly equivalent 8, and 2-sphere, with the orientation being given by
the inwardly directed normal.
Outside the region containing the monopole, the magnetic Bedatisfies @ = 0; that
is, B is a closed 2-form. There then exist 1-formds and A, such that
B =dA, on A

6
B =dA, on B. ©

On AN B one has d4, — A,) = 0 so thatA, — A, = dy, wherey is a 0-form (function)
on A N B. This means tha#, and A, are related by a gauge transformation.
The aim here is to define a 1-form on the coyér B} of R® — {0} such thatB is exact.
This can be done by using what is known as a partition of unity: for any open cover of a
manifold M, there is a collection of functiong; : Ml — [0, 1] such that

(@h) {suppy;} is locally finite
@  Yem=1  VpeM.

The first condition means that each point Idf has a neighbourhood that intersects the
support ofy; for only finitely many values of.
The cover{A, B} of AU B = R® — {0} then has a partition of unity,, ¢3} such that
patoep=1
dps +dpp =0
suppps C A
suppys C B.

This partition of unity allows the definition of the 0-formg x andggx. These have the
values

@)

©AX OnANB
YaxX =

0 onB —(ANB)
(8)

OB X onANB
5X =10 onA— (AN B).

The 0-formg, x is then well defined on s&® since it vanishes in the regiah — (A N B),
where x is not defined; and similarly, the O-forgy x is well defined on seA.
Consider now the 1-formi, — d (¢ x) defined on the set. Using equations (7),

A, —d(ppx) = As — ¢ dx — x dpp
= A, + (pa — D dy + x dos
= A, —dx +d(pax)
= A, +d(pax). 9
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The final result of this last equation is defined on #&t Moreover, again using
equations (67), the difference of these two forms defined respectivelyy ammd B is

Ay — Ap = d(gpx) + d(@ax)
= x(dpa + dep) + dx (pa + ¢5)

showing that the relation between them is still a gauge transformation.
Thus, one can define a 1-form enU B = R3 — {0} by setting it equal t4, — d(¢z x)
on the set4, and A, + d(¢, x) on the setB. Since, from equation (9),

B =d(A, —d[pgx]) = dA, on A
= d(A, +d[pax]) = dA, onB (11)

B is not only a closed 2-form, it is also exact. This construction of a non-singular vector
potential can clearly be generalized to coverings having more than two elements as was
done by Wu and Yang.

While this reformulation of the technique used by Wu and Yang allows the construction
of a single-valued vector potential for the coverifuy, B} of AU B = R3 — {0}, this is not
equivalent to the definition of a single-valued vector potential in the real spacetime outside
the region isolating the monopoléerhis possibility is precluded by the first of de Rham’s
theorems [6, 7].

3. de Rham’s theorems and Abelian monopoles

From the discussion preceding equation (6), the boundary isolating the monopole can be
considered to be a 2-cycle; since it is the only boundary, in the space outside the region
containing the monopole

d):/aMB:/MdB:O (12)

becauseB is a closed 2-form. So, i6M is just the 2-cycle isolating the monopole, the
flux @ vanishes. On the other hand,M has additional boundary components such that
Y ;aizi = OM, the z; being 2-cycles and the; constants, then

Y /ZIB:Q (13)

This relation between periofl€onstitutes a consistency relation for de Rham’s theorems
and gives an important result.

If the space containing a monopole is assumed to be unbounded, save for the
boundary isolating the monopole, with spatial topology equivaleiitte- {0}, then

a single isolated magnetic monopole, with non-zero flux, cannot exist; if additional
boundary components exist, and it is further assumed that the magnetic charge of a
monopole istm, then magnetic monopoles, if they exist, must occur in pairs having
opposite magnetic charge

T The integraIfZi B for each 2-cyclez; on M is termed a period.
i de Rham’s existence theorems are often restricted to compact spaces (Goldberg [8]), but can be generalized to
all dimensions and all differentiable manifolds. See, for example [7], Fenn [8] and for a proof, see Warner [8].
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oM=Sg+S;1+5;

Figure 1. The domainM is bounded bysy and the 2-cycles; and S» isolating the monopoles.
The open arc€; and C, can be taken as cuts to allow the existence of a single-valued vector
potential 1-form.

There is a possible caveat: if the charge of a monopole is allowed to take the values
0,+1,+2,...,+m, then differently charged monopoles, each isolated by a boundary
component, could exist provided consistency is maintained with the limitations imposed
by equation (13).

It is the fact that @ = O which is responsible for the condition given by equation (12)
or equation (13). Conversely, if one assumes the existence of a pair of monopoles with
magnetic charge-m and —m, then

/dB:/ B:Z/ B = penz;) + penzz) =0 (14)
M M i Yz

where pe(z;) = 4nm,.
The condition required for the existence of a globally defined vector potential is given
by de Rham'’s first theorem, which can be written in this case as follows.

I. A closed 2-formB is exact if and only if all its periodqzl_ B = penz;) vanish.

If 9M has only one component, sinde= [,,, B = 0, there exists a vector potential
such thatB = dA globally. If 9M has more than one component, and all of the periods do
not vanish, the second of de Rham’s theorems states the following.

Il. There exists a closed 2-forlB which has the assigned periogizsi B = pernz;),
subject to the consistency relatidn, a; penz;) = 0 if . a;2; is a boundary.

When this is the case, there is no globally defined vector potential. On the other hand,
if the space is bounded by an additional boundary compofgas shown in figure 1, one
could obtain a single-valued potential by defining the homology of open arcs modulo the
boundary. Assume this is the case.

Two points are said to be homologous if they bound an arc. If these points are on the
boundary ofM, then two arcg” andC’, contained inV, are said to be homologous modulo
the boundaryC ~ C’[modoM], if their zero-dimensional boundaries are homologous in
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X=X, ooy Xawt) p=(0, ..,0,)e R**!

f:8"-(p} -R" gi=—2x i=1,...,n

(@ (b)

Figure 2. (a) The stereographic projectiofi: S" — {p} — R". (b) A pair of monopoles with
Dirac stringsC andC’.

M. Thus, whenC ~ C’[moddM] it is possible to complet€ — C’ to a closed, bounding
curve inM by adding arcs on the boundary.

Consider the situation shown in figure 1 for two monopoles having magnetic charge
m and —m. The choice ofC; and C; is arbitrary since different choices are homologous
modulo the boundary. Taking; and C, as cuts makes the domalvi simply connected,
so that it is possible to construct a single-valued vector potentidlinAs So recedes to
infinity, the cutsC, andC, correspond to the Dirac strings associated with each monopole.

If the space is without boundary (except for the 2-cycles isolating the monopoles) this
procedure, and the Dirac strings, may not be well defined. This can be seen by using a
stereographic projection, as shown in figur@)2( Note that the pointp, corresponding
to infinity, is excluded sinc&R” is homeomorphic t&" — {p}. It is R" U {oo} that is
homeomorphic t&". In figure 2p) the Dirac stringsC and C’ are shown going towards
infinity. BecauseS" — {p} is homeomorphic taR", it is an open (unbounded) space.
ConsequentlyC and C’ do not have endpoints, a circumstance that does not necessarily
rule out the presence of a monopole. By adding the point at infinity, the Dirac strings can
be given endpoints and the space will consequently have the topoldgjy of

An interesting possibility, for the case where the space is assumed to be unbounded, is
shown in figure 3. The 2-forn# will not be exact unlesg,,, B = 0. But this is indeed the
case here because the total magnetic charge contained within the boundary is zero, since
the cut connects the 2-cycles isolating the monopoles. A single-valued vector potential is
then possible for a pair of monopoles provided a cut is made along an arc joining them; i.e.
the Dirac string is held in common, a possibility raised by Barut [2].

The above formalism can also be used to compute the total flux of the monopole as
well as the Dirac quantization condition. For the sake of completeness, these are given in
appendix B.

4. Non-Abelian gauge fields

In non-Abelian gauge theories, one generalizes the 1-férto a 1-form matrix such that
A= AT, dx" = A dx" (15)

where theT, are the generators of a given group. In Abelian electrodynamics, the group is
u@).
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S)

8M=Sl+52

Figure 3. The domainM is bounded only by the 2-cycles isolating the monopoles. A single-
valued vector potential will exist if the open a€tis taken as a cut: the Dirac string is shared
by the monopoles.

U(1) is interesting because its group manifdd is multiply connected, implying that
the physical charges are some multiple eof The group SWn), on the other hand, is
simply connected and is the universal covering group of its Lie algebra. Now the connected
Lie groups (not necessarily simply connected) which are locally isomorphic t@)Site
obtained from a covering homomorphism whose kernel is the centre @) a subgroup
of the centre. Recall that the centre of a continuous semisimple group is discrete and cannot
contain more elements that its rank. The centre, being the set of elements that commute
with all other group elements must, by Schur’'s lemma, have the generatffrmn being a
complex number. The condition that elements of(Lhave unit determinant then implies
that " = 1. Thus, the centre of SW) is isomorphic to the cyclic groug,, whose
elements may be conveniently labelled by #th roots of unity [9]. The discussion here
will involve the multiply connected groups locally isomorphic to @Y obtained via the
above homomorphism; i.e. the groups of interest ar€n$/Z,,. Note that ifn is prime,
one has only SU)/Z,, while if n = pgq, there are two additional groups $4)/Z, and
SUn)/Z,.

The basis for generalizing de Rham'’s theorems is contained in the literature dealing with
the non-Abelian Stokes theorem [10]. There one defines the non-Abelian group element
U in terms of the differential equation for parallel transport, with connectiomlong the
path x(s). Assuming the boundary conditioti(0) = I, one may rewrite the equation
of parallel transport as a Volterra integral equation and use Picard’s process of successive
approximations to solve the integral equation in terms of the path ordered exponential [11]

U= Pexp A. (16)

The condition U(0) = | is concerned with what Gantmacher [11] calls the
‘normalization’ of U. Such a normalization allows the infinite series of matrix integrals
representing the solution to the differential equation satisfied/bjo be written in the
symbolic formP exp .

Using an adaptation of the notation of Fishbagteal [10] the non-Abelian Stokes
theorem, for a surfacé with boundarydS, and fixed reference point on 95, can be
written as

Pexp|] A=P exp/ Uiy GO Uy, a7)
EN S

whereG = 1G,,, dx* dx", G,y = A, . — Apy +[Au, AJJor G=dA+ AAA=DA, and

P is some surface ordering.
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Figure 4. The surface ordering used bg)(Aref'eva and b) Fishbaneet al. The boundary of
the surface is distorted so as to divide the surface into elementary areas without the boundary
crossing itself.

Various approaches to surface ordering appear in the literature, each consistent with
distorting the boundary of so as to coverS with oriented elementary areas that can, in
the limit, be made infinitesimal. In forming the elementary areas, one must also include the
paths that lead from the reference point to the elementary area and return to the reference
point in such a way that none of the paths cross; i.e. the distortion of the boundary must be
such as to break up the surface into elementary areas without the boundary crossing itself.
The ordering is therefore important.

Figures 4&) and p) show, respectively, the surface ordering used by Aref'eva [10] and
Fishbaneet al [10]. In each of these exampleB,exp [, A can be written as

Pexp | A= UyU12U»3U34Us5Us6Us7U70. (18)
as

For the surface ordering used by Fishbatal the right-hand side of equation (18) can be
expressed as

[U01U18Us7U70) 4| Uo7U78[ Ug1U12U23Us38g] s Ug7U70|Uo7U78
x [UgaU34U4sUsg] c Ug7U70|Uo7] U78UssUs6Us7] p U70

where the terms in square brackets correspond to the loops around the elementary squares
A, B, C and D of figure 4 (full curves); the vertical bars separate the four loops and their
associated/ terms that lead from the reference point 0 to and from the loop (broken curves);
and the terms appearing in the right-hand side of equation (18) are in bold. Note that the
terms between the bold terms are equivalent to the identity, and that the terms between the
vertical bars can be reduced to the fotrg,[...]U,o. Similarly, for the example used by
Aref'eva, one has

U01[U12U23U38Usg1] g U10|Uo1U18[ UgaU3zaUa5Usg] ¢ Ug1 U1
x[U01U18Us7U70] 4 |1Uo7l U78UssUseUs7] p Uro.

Keeping in mind that th& (y) of equation (17) has an infinitesimal area—corresponding
to the elementary squares of figure 4—associated with it, each bracketed term may be
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evaluated as [¥ G(y)]x, whereX = A, B,C or D. An elementary example of this
derivation is given by Moriyasu [12]. Looking only at first-order terms, the product becomes
a sum of terms of the forn/o,[1 + G (3)]U,0, and in the limit, one obtains the right-hand
side of equation (17).

In what follows, whether a path or surface ordering is appropriate should be clear from
the context and distinguishing ordering symbols will not be used. The integrals depend
on aS but not on the parametrization ¢f i.e. not on the partition of into infinitesimal
components and their ordering. Thefactors on the right-hand side of equation (17) are
needed in the integrand to ensure that the expression is gauge invariant, and that the surface
integral is independent of the choice of surface (see 8fab] and Simonov [13]).

That equation (17) is indeed gauge covariant can be seen as follows. Under a gauge
transformation, given the definition &f in equation (16), the left-hand side of equation (17)
becomesd)’ = g~(a)Ug(a); and the right-hand side becomes

P exp/s U, G')WU,, =P exp/S ¢ @)Uy G(»)U,ug(a)

= g‘%a)[P exp /S U@,G(yw,m}g(a)

whereU;, = g M @)Uuyg(y), U}, = 87 (M Uug(@), G(») = ¢ ' (»)G(»)g(y), and the

last equality is due t@(a) being a constant matrix. The constant matrices can now be
eliminated from both sides of the equation, showing that equation (17) is indeed gauge
invariant and independent of the reference peaint The U,, and U,, in equation (17)
satisfy the two relations

dUay = _UayA(y) and d]ya = A(y)U)a (19)
as well asU,, Uy, = I.
The integrand/,, G (y)U,, in equation (17) can be thought of as a 2-form matrix derived
from the 1-form matrixU,, A(y)U,,, that is,
d(UayA(y)Uya) = UayDA(y)Uya = UayG(y)Uya- (20)
Similarly,
dd(UayA(y)Uya) = d(UayG(y)Uya) = UayDG(y)Uya =0 (21)

where DG (y) = 0 because of the Bianchi identity. It is interesting to note that here the
Bianchi identity guarantees the validity of the Poiredgmmg.
One may then write

dAd=¢ dg=ddd=0 (22)

where A(y) = U, A(y)U,, andG(y) = U,,G(y)U,,. Under a gauge transformatiq
whereA’ = g71Ag + g~tdg andU!, = g *(y)U,ag(a), it is readily shown that

(dA) = g a)dAg(a)
G =g Ha)G(y)g(a) (23)
(dG () = g H(a) dG (y)g(a).

1 Some authors take the Poinedemma to be the statement that in a contractible space all closed forms are exact.
Others take it to simply mean that two applications of the exterior derivative always yield zero. It is the latter
meaning that is intended with regard to equation (21). The Bianchi identity fails at the location of a monopole,
but will be valid so long as any monopoles present are excluded from the space by being isolated by boundary
components.
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These quantities are then gauge invariant except for a position-independent gauge rotation at
the reference point. The expressiond = G is itself fully gauge invariant and independent
of the reference point.

From equation (22) it can be seen titatis a closed 2-form matrix which is exact if
there exists a 1-form matri¥d such that i = G. A non-Abelian de Rham’s theorem
would give the conditions needed for tigobal existence ofd. In order to state such a
theorem, however, one must first define the concept of a non-Abelian period for the 2-form
matrix G. For this one needs an expression representing the non-Abelian flux through a
closed surface. In addition, a statement of a non-Abelian form of Gauss’ theorem, really a
generalized form of Stokes’ theorem, is needed. The latter can be written symbolically, for
a regionM, as

Pexp/ G= Pexp/ dg (24)
oM M

where the exact meaning of these integrals has been discussed in detail by both Fishbane
et al [10] and Simonov [13]. Sincg is a closed 2-form matrix, the integrand of the
right-hand side of equation (24) vanishes unless the Bianchi identity is violated due to the
presence of a magnetic monopoleéMh Note that, by equations (23), equation (24) is gauge
invariant.

In their seminal paper [3], Wu and Yang made the point that for non-Abelian fields it
is not possible to define the magnetic flux (in the usual sense) through a loop since the
divergence ofH does not usually vanish for such fields. This does not, however, mean that
Stokes’ theorem or Gauss’ theorem are ill defined. While it is truedhet = U,, G (y)U,,
depends on the choice of path used in calculatipg so thatG(y) does not have a unique
value at a point, the integrals of this quantity over a surface are well defined in the following
sense. In the case of Stokes’ theorem, equation (17), the integral over a surface bears a fixed
relationship to the integral of the gauge potential over the boundary of the surfAse
noted before, this relationship is gauge invariant and independent of the choice of surface or
its parametrization. In the case of Gauss’ theorem, if the integrand of the right-hand side of
equation (24) vanishes because of the Bianchi identity, then the left-hand side will have the
gauge invariant value af. Integrals of the formP exp ;. G represent the total non-Abelian
flux through the closed surfaceé. However, it can be seen from equations (23) that the
value of such integrals is indeterminate up to a position-independent gauge rotation at the
reference point.

It is important, for what follows, to note that the term ‘non-Abelian monopole’ is used
in the sense of Tse and Ezawa [14], Wu and Yang [3], and Chan and Tsou [15], as distinct
from the S@3) solitons carrying magnetic charge of 't Hooft [16] and Polyakov [17]. That
is, closed curves on the manifold of the gauge gréufall into homotopy classes;(G), or
gauge types, corresponding to a topological charge. If the gauge-group manifold is simply
connected (this will be the casesfi(G) = 0), there are no monopoles; & is compact
and semisimple, there are a finite number of monopole types; aGd=ifU(n), there are
infinitely many monopole types. The group manifold of @Y for example, is simply
connected and has no monopoles, while(@WZ, = SO(3) is not simply connected and
has two gauge types, one corresponding to the presence of a monopole, and the other to the
vacuum.

T Note added in proof. The term ‘integral’ is used here to meaexp ¢ rather than just the integral in the
exponential. Hirayama and Matsubara (Hirayama M and Matsubara S A@@8 Theor. Phys.99 691) have

shown that the value of the integral in the exponerdiaésvary under deformations of with 35 fixed, but the
quantity P expfs nevertheless remains constant under such deformations provided the Bianchi identity is satisfied.
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& D
&1, 5)
E ——
§0.89)  gLH=&r0)=&x D)
&(z, 0) =£(0,5)=¢&(1, s)

Figure 5. The family of paths &) used by Brak in the non-Abelian Stokes theorem; arg (

the corresponding family of loops enveloping a closed two-dimensional surface in spacetime
obtained by identifying the points(z, 0) and&(z, 1) and requirings (z, s) to smoothly decrease

in length asr approaches 0 or 1 so that the logu®, s) and&(1, s) are of zero length, and the
points&(z,0) = &(7, 1) = £(0,s) = £(1, s) correspond to the base poiﬂff.

When a monopole is present, an expression for the non-Abelian flux through a closed
surface is most easily defined by using the parametrized loop space introduced by Polyakov
[18] and used by Chan and Tsou [15]. They define a one-parameter family of loops which
envelope a closed surfag The loops, each of which is parametrized along its length by
s, are defined &s

> gl (s) 0<s<2r,0<t<2n (25)
with

[0 =&2r) =¢&) 0<t<2n

£ (s) =&, (s) =& 0<s<2r

where&g' corresponds to the base pointabove. When the parametertakes the value
0 or 2r, the loop is the base poir§f), and ast varies continuously from 0 tos2 the
loops cover a closed two-dimensional spacelike surface in spacetime. Since the base point
also corresponds to the identity element in group spaceyvases continuously from 0 to
2, the phase factorg;, associated with each loop trace out a path in the group manifold
beginning and ending with the identity. This is what Yang and Wu called the ‘total circuit’
for the gauge field, and was used by them to replace the electromagnetic concept of the
total magnetic flux through a closed surface surrounding a given point.

The loop parametrization of the surfadeis similar to that used by Brdlifor a sheet
(see figure 5). There one has the family of pattis, s) with ¢ being the path label
and s the parameter along the path. The loop parametrization is obtained from the sheet
parametrization used by Bralby identifying the points (z, 0) and&(z, 1) and requiring
&(1, s) to smoothly decrease in length asapproaches 0 or 1 so thaf0, s) = &(1, s) are
loops of zero length corresponding to the base péint £(r, 0) = £(t, 1). This process
is equivalent to the mapping used by Goddatal [20] where the unit square in the, ¢)

(26)

1 At an arbitrary base point in a space’’, one can define the loop spa@¥ and show thatr, (Y) = 7,_1(QY).
The parametrized set of loops defined in equation (26) then corresponds to the mapping used to; define
The isomorphism withr,(Y) implies thatz1(QY) is topologically equivalent to the sphe®8 sincer, (¥, xo) is
defined as the homotopy classes of the map that takes the boundaryettie toxo and the interior intoy .
See, for example [19].
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plane is mapped onto the sphere, with the boundary of the square corresponding to a fixed
point on the sphere.

If one chooses an arbitrary poir@?, a family of closed parametrized curves with
as origin, and a set of maps that associate with each curve an affine transformation of the
tangent space ab, these transformations form a group known as the holonomy group at
0. An expression for the loop space holonomy characterizing the non-Abelian flux through
a closed surface may then be written, in terms of the parametrized loop space, as

déz (S) g/ (s)

O(X) = P exp / dr f ds Uz (s, 00G 1 [£ ()] U, (s, 0) & (27)
where
s .0 = Prexp [ o5 L0 . (28)
In the more compact symbolic notation used earl@(E) may be written as
CIOENY exp/): g. (29)

Note that the left-hand side of equation (24) is identical to the right-hand side of
equation (29) withoM identified with . The value of the integral in equation (27) does
not depend on the parametrization of the loops. Braked 0< s,t < 1 whereasr is
replaced here by and the range is changed toQs, ¢ < 27 to be consistent with Chan
and Tsou.

With the identification given above between Polyakov’s loop parametrization and the
sheet parametrization used by B¢alChan and Tsou'®(X) is formally equivalent to the
sheet variable&(¢) defined by Bralt. This can be seen by using the multiplicative derivative
introduced by Gantmacher,

DX = (;—fx 1 (30)

Applied to ®(X) this gives
d
D,6(%X) = E(G)(E))@(E)_l

2 d t d t
=/, ds U (s, 0G 1 [£ ()] U, (s, O) 5 (S) éds(S)

A similar expression appears in the review by Goddard and Ollve [22] where it is credited
to Christ [23] and Goldstone (unpublished 1976 lectures).
Thus,

=A. (31

d
g (@=0) = AOx (1) (32)

so that® (%) is equivalent taS(¢) defined by Bralt.

The value of®©(X) depends on the gauge group and whether or not a monopole is
contained withinz. If the gauge group is SW)/Z,, the n different gauge types can be
characterized byt (SUn)/Z,) = Z,. As discussed earlie¥, is the cyclic group of order

t The expressmlivg s, 0)G v[& ()] U (s, 0) dEf (” is viewed by Charet al as a connection in loop space. They

have used this to define a corresponding curvature, the vanishing of which implies that there are no monopoles
present. The vanishing of the loop space curvature then has the same physical content as the Bianchi identity
of Abelian electromagnetism (see [21]). Note that the ‘connection’ as defined by &lardiffers from that of

Bralic.
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n that is the centre of the gauge group, and its elements may be conveniently labelled by
the nth roots of unity. The chargeenclosed byx may then be labelled by the loop space
holonomy; i.e. the value 0®(X) corresponding to the different gauge types can then be
labelled(£) by

L[O(D)] = expi2rr/n)l, r=012....,n—-1 (33)

where [, is then x n unit matrix. L[®(X)] = I,, corresponding to- = 0, indicates the
absence of a monopole.

The value of®(X) given by equation (29) can be taken as a definition of the ‘period’
needed to express a non-Abelian form of de Rham'’s theorem, at least for the 2-form matrices
G(y) discussed above. For this to make sense, it is explicitly assumed that if theMpace
contains any monopoles, they are isolated by boundary components of the space. Whus, if
has only one boundary component isolating a single monopole,lﬂt,l”fearpf2 G must, by the
generalized Stokes theorem of equation (24), be the identity matrix §inods a closed 2-
form matrix inM. The implications of this are similar to those for Abelian monopoles where
the topology assumed for a spacelike hypersurface in a spacetime containing a monopole is
alsoR® — {0}:

If the space containing a monopole is assumed to be unbounded, save for the
boundary isolating the monopole, with spatial topology equivaleiitte- {0}, then
a single isolated non-Abelian monopole, Wit{X) # I,, cannot exist

If, on the other handM hasm boundary components such that , a;z; = 9M,
the z; being the boundary component 2-cycles, and dheonstants, then by assuming
a parametrized set of loops for each of the one must have by the generalized Stokes
theorem of equation (24)

ZaiP,exp/gzP,exp/ G:P,exp/ dg = 1, (34)
i=1 Zi oM M

where @; vanishes becausgis a closed 2-form matrix ifvl. All of the periods are group
elements, and the physical meaning of this equation is that the sum of the non-Abelian
flux over all boundary components must yield the identity matrix. Differently charged
monopoles, each isolated by a boundary component, could exist—provided one maintains
consistency with the limitations imposed by equation (34).

Given that the periods of equation (34) are group elements, some discussion of the
meaning of the addition operation in this expression may be of value. The law of
addition is the group law of combination in the fundamental group of the homotopy
classes that correspond to the different monopole types. Since the fundamental group
71(SUn)/Z,) = 7Z, is an Abelian subgroup of SW), it is not only independent of the
base point, but independent of the path connecting different base points. Similarly, the value
of ®(X) in equation (27) does not depend on the location of the base point used for the
parametrized set of loops. This means, for example, tidthifis two boundary components,
for the purposes of computation one may identify the two base points of the parametrized
set of loops associated with each boundary component. If one then reparametrizes with
respect tor, ast ranges from 0 to 2, the concatenation of the two sets of loops allows

1 Corrigan and Olive [9] and Chaet al [24] have shown that the relationship between the non-Abelian electric
and magnetic charge for each of the gauge typgs=sr/2ne, wherer = 0,1, ..., (n—1). For U1) x G, where

G is any compact, semisimple group, the number of possible intersectionglpfadd G are finite and lie in a
cyclic subgroup of the centre af. If p is the number of elements in this subgroup, the generalization of the
Dirac quantization conditioag = n/2,n = 1, £2, ... is eg = n/2p, n having the range just stated.
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the loops to cover both boundary components with the law of combination being that of
combination in the fundamental group of homotopy classes. This is the same addition law
as that used by Lubkin [17] when considering the addition or combination of two ‘bags’.

Consider SW2)/Z, = SO(3), which is obtained from S(2) by identifying pairs of
elements with opposite signs; since the grougBWas the topology of the hyperspherical
surfaceS®, one must identify antipodal points o#° to obtain the group manifold of
SO(3). All closed curves in S(B) thus fall into two homotopy classes corresponding
to the fundamental grouf,: those that wind around S@) once, and cannot be smoothly
contracted to a point, and those which wind around twice and can be so contracted. If both
boundary components dfl are now assumed to contain a monopole, as the loops range
over the first boundary component a path is traced out halfway around the s&tfabeés
is a closed curve since antipodal points are identified, and it cannot be smoothly contracted
to a point. As the loops range over the second boundary component, a second such path is
traced out irS® which, when combined with the first yields a closed curveSdmvhich now
can be continuously contracted to a point. Thus, foBWZ, two monopoles combine to
give a ‘charge’ of zero so that a monopole is its own antimonopole [15].

A possible statement of a non-Abelian version of de Rham’s theorems is now
straightforward. IfG is a closed 2-form matrix, for each 2-cycjeone can define a period
of G by P exp[,G. de Rham’s theorems can then be expressed for the non-Abelian gauge
potential A and the corresponding field strengihas follows.

I. The closed 2-form matrig is exact if and only if all its periods yield the identity
matrix.

Note that this does not imply the existence of a uniglyeonsistent with the results of
Wu and Yang [3] that the field strength does not determine a unique gauge potential.

If 9M has more than one component, and all of the periods do not yield the identity
matrix, then the non-Abelian version of the second of de Rham'’s theorems would be as
follows.

Il. If each 2-cyclez is assigned an element in the centre of the gauge gmoepz),
there is closed 2-form matrig which has the assigned perio#sexp [, G = penz)
for each 2-cycle: (subject to the consistency relatidn,, a; penz;) = I, if Y, a;z;
is a boundary)

Here aglobal non-Abelian gauge potential does not exist. The consistency relation,
which comes from equation (34), continues to hold sin¢e dill vanishes becausg
remains a closed 2-form matrix bl (the Bianchi identity guarantees this as shown by
equation (21)).

It should also be noted that, unlike the Abelian case, if one constructs a cover for the
spaceR® — {0} containing a single isolated monopole (despite the fact that this possibility
has been ruled out above), where the gauge potential on each element of the cover is related
by A’ = g71Ag + g1dg, the field (curvature) on the different elements of the cover is not
identical. In fact, the gauge transformatidh= g~1Ag + g1 dg implies thatG’ = g~1Gg
or G(v) = g Y(a)G(y)g(a), so that the field on different elements of the cover depends on
a gauge rotation, which is position independent in the casge @&s mentioned above, the
field strength does not uniquely determine the gauge potential, although one may choose a
specialized gauge where this is the case [25].
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Appendix A

de Rham'’s theorems applied to electromagnetics specify the conditions needed for the global
existence of a vector potentid. To facilitate contact with de Rham’s theorems, the vector
potential is replaced by a 1-forsh and the magnetic field by a 2-for®. If A is a 1-form
such that d = B, then the Poincé&rlemma states thatAlis a closed form; that is, Rl = 0.
Locally, the converse of the Poinéalemma is also true: iB is a closed 2-form, then there
is a 1-form A such thatB = dA, which means thaB is an exact form. In general, no
such 1-form existgjlobally.

de Rham’s theorems, which specify the conditions needed for the global existeAce of
are perhaps most easily understood in the form given by Flanders [26]. They need not be
restricted to 2-forms but hold fgr-forms. In general then, ib is a closedp-form, for each
p-cyclef z one can define a period afby [ w. The period only depends on the homology
class ofz. If z is a boundary, then by Stokes’ theorem the period vanishes. Therefore, if
> a;z; = boundary, ther_ a; fz/_ o = 0. de Rham'’s first and second theorems can then
be expressed as follows.

I. A closed p-form is exact if and only if all its periods vanish

II. If each p-cyclez is assigned a numbepen(z), there is a closed p-forne which
has the assigned periods » = per(z) for each p-cycle: (subject to the consistency
relation > a; penz;) = 0if > a;z; is a boundary)

If wis set equal to the 2-form, the substance of de Rham'’s first theorem is as follows.
Since the magnetic fiel® is solenoidal(dB = 0), a vector potential exists locally such
that B = dA; i.e. B is locally exact. ForA to exist globally, the closed surface periods
/. B must vanish £ being a 2-cycle). Another way of stating the first theorem uses the
cohomology groupH?” (M, R), whereM is an n-dimensional differential manifold. The
group H? (M, R) is isomorphic to the factor group of the group of clogedorms onM
by the subgroup of exagi-forms onM. Thus, the statement that every clogedorm on
M is exact is equivalent té/” (M, R) = 0. The second of de Rham’s theorems deals with
the case where a global vector potential does not exist.

T In general, the domain within which a closgdform will be exact depends op: if p = 0, the domain must

be connected; ifp = 1, the domain must be simply connected; ang it= 2, one must be able to shrink any
spherical surface to a point.

1 If one generalizes the concept of the triangulation of a surface to higher-dimensional spaces where the basic
elements of the triangulation aresimplices, recall that a cycle is defined as a chain whose boundary vanishes,
while ann-chain is a formal sum, with constant coefficientszedimplices. The collection of alt-cycles forms

the n-dimensional cycle groufZ,, while the collection of allz-boundaries forms the-dimensional boundary

group B,. The factor or quotient grougl, = Z,/B, is known as the:-dimensional homology group. The
elements ofH, are called homology classes, and cycles in the same homology class are said to be homologous.
The H, can be given a geometrical interpretatidfly is a measure of the number of connected components of the
space;H; of the number of closed curves that are not boundaries of a two-dimensional part of the spalie; and
measures the number of closed two-dimensional surfaces that are not boundaries of some three-dimensional part
of the space.
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Figure 6. (a) The contour” bounding the cags4 is shown on the open set (the origin and
negativez-axis has been deletedp)(the contourl” bounding the cagy is shown on the open
set B (the origin and positive-axis has been deleted); ang),(the contourl” is shown on the
open setA N B where the entireg-axis has been deleted. A possible cut needed to make the
scalar functiony single-valued is indicated by the cross-hatching.

Appendix B

B.1. The total flux

With reference to figure 6, the equation
A, — A, =dy (B.1)
can be integrated around a closed contdyron a sphere isolating the monopole to obtain

[ A= [ 2= [ o (B.2)

Note that the first integral is defined on the getthe second on the sé&, and the third
onANB.

The integral, /.. A, is the flux throughS,. The second integralf. A;, is the flux
through S, but a minus sign must be introduced because of the relative orientation of the
normal to this surface and the contdur If one introduces the usual spherical coordinates,
the total flux is explicitly given by

m 2 0 m 2 b g
= d¢/ r2sind do + —2/ d¢/ r?sinddd = 4rm. (B.3)
r=Jo 0 r=Jo 6

As seen in figure &), the integral, [, dx, is not trivially zero by Stokes’ theorem
because the contodt cannot be smoothly contracted to a point 4m B if it circles the
z-axis. To evaluate this integral one must make a cut that consists, for example, of the
half-planey = O bounded by the-axis. The value of the integral is then the jump in
crossing this plane and is equal to the total monopole flux (see [7]).

Let us briefly return to figure @) where the contoul” is shown bounding the cap
S4. Topologically, the caps, bounded byl" is homeomorphic to the closed digké. It
is often stated in the literature that as— = the contourl" shrinks to zero yielding the
closed surface of the sphere. Such a transformation takes a surface with a boundary into a
surface without a boundary, and cannot be a topological mapping since it does not preserve
interior and boundary points, which have different local homology groups. The sphere
is homeomorphic t&®? andD?, the open disk, nob?. It is the factor spac®?/S! that is
homeomorphic t&2.
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B.2. The Dirac quantization condition

For a classical charged patrticle, the equation of motion may be written as
dzxﬂ F dx”

me—— —ekFy,—

ds? " ds

wherem, is the mass of a particle with chargeandF,,, is the electromagnetic field tensor.
The corresponding action is

S[x(1)] = —me/ds — e/ A, dx?. (B.5)

In the spaced U B = R3—{0} there is no globally defined vector potential, and consequently
equation (B.5) is not in a usable form. However, if one chooses thexgajhto be a closed
spacetime path the action can be written, using Stokes’ theorem as

ﬂﬂﬂh:wu/m—eLF (B.6)

where X is the surface spanned by the closed path), and F is the electromagnetic
2-form. Consider only the last term. In the context of the above formalism, this term
becomes

=0 (B.4)

S[T] = —e/ dy. (B.7)
r
In quantum mechanics, for e /%) to be well defined (single-valued), one must have
h
/mzi. (B.8)
r e

However the integral,/.. dx is the total flux of the monopole which isz4:, so that

m = nh/2e, which is Dirac’'s quantization condition. It should be noted that there is
nothing in the topology that mandates the quantization of the monopole field. It is simply
the requirement that exi$ /%) is single-valued that is responsible for this condition.
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