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Abstract. The topology assumed by most authors for a spacelike hypersurface in a spacetime
containing a monopole is generallyR3−{0}; save for the surfaceS2 isolating the monopole, this
space is unbounded. For such a topology, a consistency relation of de Rham’s theorems shows
that a single isolated monopole cannot exist. Monopoles, with charge±m, if they exist at all,
must occur in pairs having opposite magnetic charge. An extension of de Rham’s theorems to
non-Abelian monopoles which are generalizations of Dirac monopoles (those characterized by
π1(G), the fundamental group of the gauge groupG) is made using the definition of an ordered
integral of a path-dependent curvature over a surface. This integral is similar to that found
in the non-Abelian Stokes theorem. The implications of de Rham’s theorems for non-Abelian
monopoles are shown to be similar to the Abelian case.

1. Introduction

This paper deals with an area that dates back to Dirac’s 1948 paper [1] on magnetic
monopoles, and which introduced into the literature the concept of the Dirac ‘string’. Even
as late as 20 years ago, the reality of the Dirac string remained controversial†. Wu and
Yang [3] sought to eliminate the string associated with a magnetic monopole by dividing
spacetime into two or more overlapping regions, and defining a singularity-free vector
potential in each region. In the region of overlap, the vector potentials are related by a
gauge transformation. Yang [4] likened the problem of finding a singularity-free vector
potential for the monopole to that of defining singularity-free coordinates on a globe. This
‘patching’ approach amounts to defining a non-singular vector potential on a covering of
spacetime.

Because there is an equivalence between coverings and a special class of bundles, one
may also use the language of fibre bundles to discuss monopoles. However, the topology
must be more complex thanR3. If the space containing the monopole wasR3 instead of
R3−{0}, the bundle would be trivial sinceR3 is contractible and a bundle over a contractible
base space is trivial. One needs the topology ofR3 − {0} to define the non-trivial bundle
needed for the presence of a monopole. The only boundary ofR3 − {0} is S2, the surface
isolating the monopole. BecauseR3 − {0} has the same topology asS2, Dirac monopoles
correspond to non-trivial U1 bundles overS2. This implies that it is not possible to choose a
global cross section of the bundle, which is what leads to the necessity of patching the vector
potential. The topology ofR3−{0} also has implications for the physics. For example, the
deletion of the origin from Minkowski space means that the resultant spacetime does not
have a Cauchy surface [5].

† There is interesting literature that deals with the reality of the Dirac string. See, for example [2].
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Defining a non-singular vector potential on a covering of spacetime is not very
satisfactory because it does not alter the fact that a singularity-free vector potential does not
exist on the underlying spacetime itself. Indeed, the existence of such a potential is precluded
by the first of de Rham’s theorems, a statement of which is contained in appendix A. These
theorems are pertinent to the study of monopoles because of the presence of the boundary
S2 in the spaceR3 − {0} containing the monopole. de Rham’s theorems imply that if
monopoles of charge±m exist, a single-valued vector potential can only be defined by
treating the Dirac string as a real cut in spacetime. That the Dirac string has a definite
physical and observable significance, and is not merely a mathematical device, has also
been argued by Barut [2].

The discussion below begins by reformulating the Wu–Yang approach to Abelian
magnetic monopoles and applying de Rham’s theorems. Since the topological considerations
given above also apply to non-Abelian monopoles, the question naturally arises as to whether
there is a generalization of de Rham’s theorems so as to make them applicable to non-
Abelian fields. A possible generalization is given in the second part of the paper. Non-
Abelian monopoles use the concept of a principal bundle where the fibre coincides with the
structure group. If the structure group (or the base space) is contractible, the bundle will
be trivial. The topology ofR3− {0} is again necessary to have a non-trivial bundle.

What will be shown is that if, as must be done to obtain a non-trivial bundle, one
isolates monopoles—Abelian or non-Abelian—by excising their location in spacetime,
thereby isolating them by boundary components of the space, one cannot arbitrarily choose
monopole types and charges. The implications of the non-Abelian extension of de Rham’s
theorems are similar to those for the Abelian version. There are some differences, however,
which are discussed below.

2. A reformulation of Wu and Yang’s approach

The connection between de Rham’s theorems and monopoles is best illustrated by the
Abelian case. This and the following section are concerned only with Dirac monopoles
and serve to bring out the implications of the necessary choice ofR3 − {0} for the space
containing a monopole.

Consider the following twoopen sets:

A = R3− {(0, 0)× (−∞, 0]}
B = R3− {(0, 0)× [0,∞)}. (1)

SetA is all of R3 with the negativez-axis and origin deleted, while setB is all of a second
copy ofR3 with the positivez-axis and origin deleted. The union of these two open sets
is†

A ∪ B = R3− {0}. (2)

The monopole is assumed to be located at the origin. It will be useful for what follows to
note that

A ∩ B = [R2− {0}] × R (3)

meaning all ofR3 with the z-axis deleted, whileA− (A ∩ B) ⊂ A andB − (A ∩ B) ⊂ B
correspond respectively to the positive and negativez-axes without the origin.

† It is interesting to note thatR3−{0} is also definable as the intersection of two setsA andB defined as follows.
Let A beS3 with the north pole deleted andB beS3 with the south pole deleted. ThenS3 = A∪B andA∩B is
S3 with both the north and south poles deleted. Under a stereographic projection,A ∩ B ∼= R3 − {0}.
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To obtain a sphere within which most authors usually isolate a monopole, one would
delete a region about the originr 6 ε, and with a slight change in the definition of setsA
andB obtain

A ∪ B = R3− {r 6 ε}. (4)

Note that sinceR3 is unbounded,

∂[A ∪ B] = −∂{r 6 ε} = −{r = ε}. (5)

This boundary is clearly equivalent toS2, and 2-sphere, with the orientation being given by
the inwardly directed normal.

Outside the region containing the monopole, the magnetic fieldB satisfies dB = 0; that
is, B is a closed 2-form. There then exist 1-formsAa andAb such that

B = dAa on A

B = dAb on B.
(6)

On A ∩ B one has d(Aa −Ab) = 0 so thatAa −Ab = dχ , whereχ is a 0-form (function)
on A ∩ B. This means thatAa andAb are related by a gauge transformation.

The aim here is to define a 1-form on the cover{A,B} of R3−{0} such thatB is exact.
This can be done by using what is known as a partition of unity: for any open cover of a
manifoldM, there is a collection of functionsϕi : M→ [0, 1] such that

(1) {suppϕi} is locally finite

(2)
∑
i

ϕi(p) = 1 ∀p ∈M.

The first condition means that each point ofM has a neighbourhood that intersects the
support ofϕi for only finitely many values ofi.

The cover{A,B} of A ∪B = R3− {0} then has a partition of unity{ϕA, ϕB} such that

ϕA + ϕB = 1

dϕA + dϕB = 0

suppϕA ⊂ A
suppϕB ⊂ B.

(7)

This partition of unity allows the definition of the 0-formsϕAχ andϕBχ . These have the
values

ϕAχ =
{
ϕAχ on A ∩ B
0 onB − (A ∩ B)

ϕBχ =
{
ϕBχ on A ∩ B
0 onA− (A ∩ B).

(8)

The 0-formϕAχ is then well defined on setB since it vanishes in the regionB − (A∩B),
whereχ is not defined; and similarly, the 0-formϕBχ is well defined on setA.

Consider now the 1-formAa − d(ϕBχ) defined on the setA. Using equations (7),

Aa − d(ϕBχ) = Aa − ϕB dχ − χ dϕB
= Aa + (ϕA − 1) dχ + χ dϕA
= Aa − dχ + d(ϕAχ)

= Ab + d(ϕAχ). (9)
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The final result of this last equation is defined on setB. Moreover, again using
equations (67), the difference of these two forms defined respectively onA andB is

Aa − Ab = d(ϕBχ)+ d(ϕAχ)

= χ(dϕA + dϕB)+ dχ (ϕA + ϕB)
= dχ (10)

showing that the relation between them is still a gauge transformation.
Thus, one can define a 1-form onA∪B = R3−{0} by setting it equal toAa − d(ϕBχ)

on the setA, andAb + d(ϕAχ) on the setB. Since, from equation (9),

B = d(Aa − d[ϕBχ ]) = dAa on A

= d(Ab + d[ϕAχ ]) = dAb on B (11)

B is not only a closed 2-form, it is also exact. This construction of a non-singular vector
potential can clearly be generalized to coverings having more than two elements as was
done by Wu and Yang.

While this reformulation of the technique used by Wu and Yang allows the construction
of a single-valued vector potential for the covering{A,B} of A∪B = R3− {0}, this is not
equivalent to the definition of a single-valued vector potential in the real spacetime outside
the region isolating the monopole. This possibility is precluded by the first of de Rham’s
theorems [6, 7].

3. de Rham’s theorems and Abelian monopoles

From the discussion preceding equation (6), the boundary isolating the monopole can be
considered to be a 2-cycle; since it is the only boundary, in the space outside the region
containing the monopole

8 =
∫
∂M
B =

∫
M

dB = 0 (12)

becauseB is a closed 2-form. So, if∂M is just the 2-cycle isolating the monopole, the
flux 8 vanishes. On the other hand, ifM has additional boundary components such that∑

i aizi = ∂M, thezi being 2-cycles and theai constants, then∑
i

ai

∫
zi

B = 0. (13)

This relation between periods† constitutes a consistency relation for de Rham’s theorems‡
and gives an important result.

If the space containing a monopole is assumed to be unbounded, save for the
boundary isolating the monopole, with spatial topology equivalent toR3− {0}, then
a single isolated magnetic monopole, with non-zero flux, cannot exist; if additional
boundary components exist, and it is further assumed that the magnetic charge of a
monopole is±m, then magnetic monopoles, if they exist, must occur in pairs having
opposite magnetic charge.

† The integral
∫
zi
B for each 2-cyclezi onM is termed a period.

‡ de Rham’s existence theorems are often restricted to compact spaces (Goldberg [8]), but can be generalized to
all dimensions and all differentiable manifolds. See, for example [7], Fenn [8] and for a proof, see Warner [8].
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Figure 1. The domainM is bounded byS0 and the 2-cyclesS1 andS2 isolating the monopoles.
The open arcsC1 andC2 can be taken as cuts to allow the existence of a single-valued vector
potential 1-form.

There is a possible caveat: if the charge of a monopole is allowed to take the values
0,±1,±2, . . . ,±m, then differently charged monopoles, each isolated by a boundary
component, could exist provided consistency is maintained with the limitations imposed
by equation (13).

It is the fact that dB = 0 which is responsible for the condition given by equation (12)
or equation (13). Conversely, if one assumes the existence of a pair of monopoles with
magnetic charge+m and−m, then∫

M
dB =

∫
∂M
B =

∑
i

∫
zi

B = per(z1)+ per(z2) = 0 (14)

where per(zi ) = 4πmi .
The condition required for the existence of a globally defined vector potential is given

by de Rham’s first theorem, which can be written in this case as follows.

I. A closed 2-formB is exact if and only if all its periods
∫
zi
B = per(zi ) vanish.

If ∂M has only one component, since8 = ∫
∂M B = 0, there exists a vector potentialA

such thatB = dA globally. If ∂M has more than one component, and all of the periods do
not vanish, the second of de Rham’s theorems states the following.

II. There exists a closed 2-formB which has the assigned periods
∫
zi
B = per(zi ),

subject to the consistency relation
∑

i ai per(zi ) = 0 if
∑

i aizi is a boundary.

When this is the case, there is no globally defined vector potential. On the other hand,
if the space is bounded by an additional boundary componentS0 as shown in figure 1, one
could obtain a single-valued potential by defining the homology of open arcs modulo the
boundary. Assume this is the case.

Two points are said to be homologous if they bound an arc. If these points are on the
boundary ofM, then two arcsC andC ′, contained inM, are said to be homologous modulo
the boundary,C ∼ C ′[mod∂M], if their zero-dimensional boundaries are homologous in
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Figure 2. (a) The stereographic projectionf : Sn − {p} → Rn. (b) A pair of monopoles with
Dirac stringsC andC′.

M̄. Thus, whenC ∼ C ′[mod∂M] it is possible to completeC − C ′ to a closed, bounding
curve inM by adding arcs on the boundary.

Consider the situation shown in figure 1 for two monopoles having magnetic charge
m and−m. The choice ofC1 andC2 is arbitrary since different choices are homologous
modulo the boundary. TakingC1 andC2 as cuts makes the domainM simply connected,
so that it is possible to construct a single-valued vector potential inM. As S0 recedes to
infinity, the cutsC1 andC2 correspond to the Dirac strings associated with each monopole.

If the space is without boundary (except for the 2-cycles isolating the monopoles) this
procedure, and the Dirac strings, may not be well defined. This can be seen by using a
stereographic projection, as shown in figure 2(a). Note that the pointp, corresponding
to infinity, is excluded sinceRn is homeomorphic toSn − {p}. It is Rn ∪ {∞} that is
homeomorphic toSn. In figure 2(b) the Dirac stringsC andC ′ are shown going towards
infinity. BecauseSn − {p} is homeomorphic toRn, it is an open (unbounded) space.
Consequently,C andC ′ do not have endpoints, a circumstance that does not necessarily
rule out the presence of a monopole. By adding the point at infinity, the Dirac strings can
be given endpoints and the space will consequently have the topology ofSn.

An interesting possibility, for the case where the space is assumed to be unbounded, is
shown in figure 3. The 2-formB will not be exact unless

∫
∂M B = 0. But this is indeed the

case here because the total magnetic charge contained within the boundary is zero, since
the cut connects the 2-cycles isolating the monopoles. A single-valued vector potential is
then possible for a pair of monopoles provided a cut is made along an arc joining them; i.e.
the Dirac string is held in common, a possibility raised by Barut [2].

The above formalism can also be used to compute the total flux of the monopole as
well as the Dirac quantization condition. For the sake of completeness, these are given in
appendix B.

4. Non-Abelian gauge fields

In non-Abelian gauge theories, one generalizes the 1-formA to a 1-form matrix such that

A = AaµTa dxµ = Aµ dxµ (15)

where theTa are the generators of a given group. In Abelian electrodynamics, the group is
U(1).
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Figure 3. The domainM is bounded only by the 2-cycles isolating the monopoles. A single-
valued vector potential will exist if the open arcC is taken as a cut: the Dirac string is shared
by the monopoles.

U(1) is interesting because its group manifoldS1 is multiply connected, implying that
the physical charges are some multiple ofe. The group SU(n), on the other hand, is
simply connected and is the universal covering group of its Lie algebra. Now the connected
Lie groups (not necessarily simply connected) which are locally isomorphic to SU(n) are
obtained from a covering homomorphism whose kernel is the centre of SU(n) or a subgroup
of the centre. Recall that the centre of a continuous semisimple group is discrete and cannot
contain more elements that its rank. The centre, being the set of elements that commute
with all other group elements must, by Schur’s lemma, have the general formωIn, ω being a
complex number. The condition that elements of SU(n) have unit determinant then implies
that ωn = 1. Thus, the centre of SU(n) is isomorphic to the cyclic groupZn, whose
elements may be conveniently labelled by thenth roots of unity [9]. The discussion here
will involve the multiply connected groups locally isomorphic to SU(n) obtained via the
above homomorphism; i.e. the groups of interest are SU(n)/Zn. Note that ifn is prime,
one has only SU(n)/Zn, while if n = pq, there are two additional groups SU(n)/Zp and
SU(n)/Zq .

The basis for generalizing de Rham’s theorems is contained in the literature dealing with
the non-Abelian Stokes theorem [10]. There one defines the non-Abelian group element
U in terms of the differential equation for parallel transport, with connectionA, along the
path x(s). Assuming the boundary conditionU(0) = I , one may rewrite the equation
of parallel transport as a Volterra integral equation and use Picard’s process of successive
approximations to solve the integral equation in terms of the path ordered exponential [11]

U = P exp
∫
x(s)

A. (16)

The condition U(0) = I is concerned with what Gantmacher [11] calls the
‘normalization’ of U . Such a normalization allows the infinite series of matrix integrals
representing the solution to the differential equation satisfied byU to be written in the
symbolic formP exp

∫
.

Using an adaptation of the notation of Fishbaneet al [10] the non-Abelian Stokes
theorem, for a surfaceS with boundary∂S, and fixed reference pointa on ∂S, can be
written as

P exp
∫
∂S

A = P exp
∫
S

UayG(y)Uya (17)

whereG = 1
2Gµν dxµ dxν , Gµν = Aν,µ −Aµ,ν + [Aµ,Aν ] or G = dA+A∧A = DA, and

P is some surface ordering.
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Figure 4. The surface ordering used by (a) Aref’eva and (b) Fishbaneet al. The boundary of
the surface is distorted so as to divide the surface into elementary areas without the boundary
crossing itself.

Various approaches to surface ordering appear in the literature, each consistent with
distorting the boundary ofS so as to coverS with oriented elementary areas that can, in
the limit, be made infinitesimal. In forming the elementary areas, one must also include the
paths that lead from the reference point to the elementary area and return to the reference
point in such a way that none of the paths cross; i.e. the distortion of the boundary must be
such as to break up the surface into elementary areas without the boundary crossing itself.
The ordering is therefore important.

Figures 4(a) and (b) show, respectively, the surface ordering used by Aref’eva [10] and
Fishbaneet al [10]. In each of these examples,P exp

∫
∂S
A can be written as

P exp
∫
∂S

A = U01U12U23U34U45U56U67U70. (18)

For the surface ordering used by Fishbaneet al the right-hand side of equation (18) can be
expressed as

[U01U18U87U70]A|U07U78[U81U12U23U38]BU87U70|U07U78

×[U83U34U45U58]CU87U70|U07[U78U85U56U67]DU70

where the terms in square brackets correspond to the loops around the elementary squares
A,B,C andD of figure 4 (full curves); the vertical bars separate the four loops and their
associatedU terms that lead from the reference point 0 to and from the loop (broken curves);
and the terms appearing in the right-hand side of equation (18) are in bold. Note that the
terms between the bold terms are equivalent to the identity, and that the terms between the
vertical bars can be reduced to the formU0n[. . .]Un0. Similarly, for the example used by
Aref’eva, one has

U01[U12U23U38U81]BU10|U01U18[U83U34U45U58]CU81U10|
×[U01U18U87U70]A|U07[U78U85U56U67]DU70.

Keeping in mind that theG(y) of equation (17) has an infinitesimal area—corresponding
to the elementary squares of figure 4—associated with it, each bracketed term may be
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evaluated as [1+ G(y)]X, whereX = A,B,C or D. An elementary example of this
derivation is given by Moriyasu [12]. Looking only at first-order terms, the product becomes
a sum of terms of the formU0y [1+G(y)]Uy0, and in the limit, one obtains the right-hand
side of equation (17).

In what follows, whether a path or surface ordering is appropriate should be clear from
the context and distinguishing ordering symbols will not be used. The integrals depend
on ∂S but not on the parametrization ofS, i.e. not on the partition ofS into infinitesimal
components and their ordering. TheU factors on the right-hand side of equation (17) are
needed in the integrand to ensure that the expression is gauge invariant, and that the surface
integral is independent of the choice of surface (see Bralić [10] and Simonov [13]).

That equation (17) is indeed gauge covariant can be seen as follows. Under a gauge
transformation, given the definition ofU in equation (16), the left-hand side of equation (17)
becomesU ′ = g−1(a)Ug(a); and the right-hand side becomes

P exp
∫
S

U ′ayG
′(y)U ′ya = P exp

∫
S

g−1(a)UayG(y)Uyag(a)

= g−1(a)

[
P exp

∫
S

UayG(y)Uya

]
g(a)

whereU ′ay = g−1(a)Uayg(y), U ′ya = g−1(y)Uyag(a), G(y)′ = g−1(y)G(y)g(y), and the
last equality is due tog(a) being a constant matrix. The constant matrices can now be
eliminated from both sides of the equation, showing that equation (17) is indeed gauge
invariant and independent of the reference pointa. The Uay and Uya in equation (17)
satisfy the two relations

dUay = −UayA(y) and dUya = A(y)Uya (19)

as well asUayUya = I .
The integrandUayG(y)Uya in equation (17) can be thought of as a 2-form matrix derived

from the 1-form matrixUayA(y)Uya, that is,

d(UayA(y)Uya) = UayDA(y)Uya = UayG(y)Uya. (20)

Similarly,

dd(UayA(y)Uya) = d(UayG(y)Uya) = UayDG(y)Uya = 0 (21)

where DG(y) = 0 because of the Bianchi identity. It is interesting to note that here the
Bianchi identity guarantees the validity of the Poincaré lemma†.

One may then write

dA = G dG = ddA = 0 (22)

whereA(y) = UayA(y)Uya and G(y) = UayG(y)Uya. Under a gauge transformationg,
whereA′ = g−1Ag + g−1 dg andU ′ya = g−1(y)Uyag(a), it is readily shown that

(dA)′ = g−1(a) dA g(a)
G(y)′ = g−1(a)G(y)g(a)
(dG (y))′ = g−1(a) dG (y)g(a).

(23)

† Some authors take the Poincaré lemma to be the statement that in a contractible space all closed forms are exact.
Others take it to simply mean that two applications of the exterior derivative always yield zero. It is the latter
meaning that is intended with regard to equation (21). The Bianchi identity fails at the location of a monopole,
but will be valid so long as any monopoles present are excluded from the space by being isolated by boundary
components.
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These quantities are then gauge invariant except for a position-independent gauge rotation at
the reference pointa. The expression dA = G is itself fully gauge invariant and independent
of the reference point.

From equation (22) it can be seen thatG is a closed 2-form matrix which is exact if
there exists a 1-form matrixA such that dA = G. A non-Abelian de Rham’s theorem
would give the conditions needed for theglobal existence ofA. In order to state such a
theorem, however, one must first define the concept of a non-Abelian period for the 2-form
matrix G. For this one needs an expression representing the non-Abelian flux through a
closed surface. In addition, a statement of a non-Abelian form of Gauss’ theorem, really a
generalized form of Stokes’ theorem, is needed. The latter can be written symbolically, for
a regionM, as

P exp
∫
∂M
G = P exp

∫
M

dG (24)

where the exact meaning of these integrals has been discussed in detail by both Fishbane
et al [10] and Simonov [13]. SinceG is a closed 2-form matrix, the integrand of the
right-hand side of equation (24) vanishes unless the Bianchi identity is violated due to the
presence of a magnetic monopole inM. Note that, by equations (23), equation (24) is gauge
invariant.

In their seminal paper [3], Wu and Yang made the point that for non-Abelian fields it
is not possible to define the magnetic flux (in the usual sense) through a loop since the
divergence ofH does not usually vanish for such fields. This does not, however, mean that
Stokes’ theorem or Gauss’ theorem are ill defined. While it is true thatG(y) = UayG(y)Uya
depends on the choice of path used in calculatingUay , so thatG(y) does not have a unique
value at a point, the integrals of this quantity over a surface are well defined in the following
sense. In the case of Stokes’ theorem, equation (17), the integral over a surface bears a fixed
relationship to the integral of the gauge potential over the boundary of the surface†. As
noted before, this relationship is gauge invariant and independent of the choice of surface or
its parametrization. In the case of Gauss’ theorem, if the integrand of the right-hand side of
equation (24) vanishes because of the Bianchi identity, then the left-hand side will have the
gauge invariant value ofI . Integrals of the formP exp

∫
6
G represent the total non-Abelian

flux through the closed surface6. However, it can be seen from equations (23) that the
value of such integrals is indeterminate up to a position-independent gauge rotation at the
reference pointa.

It is important, for what follows, to note that the term ‘non-Abelian monopole’ is used
in the sense of Tse and Ezawa [14], Wu and Yang [3], and Chan and Tsou [15], as distinct
from the SO(3) solitons carrying magnetic charge of ’t Hooft [16] and Polyakov [17]. That
is, closed curves on the manifold of the gauge groupG fall into homotopy classesπ1(G), or
gauge types, corresponding to a topological charge. If the gauge-group manifold is simply
connected (this will be the case ifπ1(G) = 0), there are no monopoles; ifG is compact
and semisimple, there are a finite number of monopole types; and ifG = U(n), there are
infinitely many monopole types. The group manifold of SU(2), for example, is simply
connected and has no monopoles, while SU(2)/Z2

∼= SO(3) is not simply connected and
has two gauge types, one corresponding to the presence of a monopole, and the other to the
vacuum.

† Note added in proof. The term ‘integral’ is used here to meanP exp
∫
S

rather than just the integral in the
exponential. Hirayama and Matsubara (Hirayama M and Matsubara S 1998Prog. Theor. Phys.99 691) have
shown that the value of the integral in the exponentialdoesvary under deformations ofS with ∂S fixed, but the
quantityP exp

∫
S

nevertheless remains constant under such deformations provided the Bianchi identity is satisfied.
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Figure 5. The family of paths (a) used by Bralíc in the non-Abelian Stokes theorem; and (b)
the corresponding family of loops enveloping a closed two-dimensional surface in spacetime
obtained by identifying the pointsξ(τ, 0) andξ(τ, 1) and requiringξ(τ, s) to smoothly decrease
in length asτ approaches 0 or 1 so that the loopsξ(0, s) andξ(1, s) are of zero length, and the
pointsξ(τ, 0) = ξ(τ, 1) = ξ(0, s) = ξ(1, s) correspond to the base pointξµ0 .

When a monopole is present, an expression for the non-Abelian flux through a closed
surface is most easily defined by using the parametrized loop space introduced by Polyakov
[18] and used by Chan and Tsou [15]. They define a one-parameter family of loops which
envelope a closed surface6. The loops, each of which is parametrized along its length by
s, are defined as†

6 : ξµt (s) 06 s 6 2π, 06 t 6 2π (25)

with

ξ
µ
t (0) = ξµt (2π) = ξµ0 06 t 6 2π

ξ
µ

0 (s) = ξµ2π (s) = ξµ0 06 s 6 2π
(26)

where ξµ0 corresponds to the base pointa above. When the parametert takes the value
0 or 2π , the loop is the base pointξµ0 , and ast varies continuously from 0 to 2π , the
loops cover a closed two-dimensional spacelike surface in spacetime. Since the base point
also corresponds to the identity element in group space, ast varies continuously from 0 to
2π , the phase factorsUξt associated with each loop trace out a path in the group manifold
beginning and ending with the identity. This is what Yang and Wu called the ‘total circuit’
for the gauge field, and was used by them to replace the electromagnetic concept of the
total magnetic flux through a closed surface surrounding a given point.

The loop parametrization of the surface6 is similar to that used by Bralić for a sheet
(see figure 5). There one has the family of pathsξ(τ, s) with τ being the path label
and s the parameter along the path. The loop parametrization is obtained from the sheet
parametrization used by Bralić by identifying the pointsξ(τ, 0) and ξ(τ, 1) and requiring
ξ(τ, s) to smoothly decrease in length asτ approaches 0 or 1 so thatξ(0, s) = ξ(1, s) are
loops of zero length corresponding to the base pointξ0 = ξ(τ, 0) = ξ(τ, 1). This process
is equivalent to the mapping used by Goddardet al [20] where the unit square in the(s, t)

† At an arbitrary base pointx0 in a spaceY , one can define the loop space�Y and show thatπn(Y ) ∼= πn−1(�Y).
The parametrized set of loops defined in equation (26) then corresponds to the mapping used to defineπ1(�Y).
The isomorphism withπ2(Y ) implies thatπ1(�Y) is topologically equivalent to the sphereS2 sinceπn(Y, x0) is
defined as the homotopy classes of the map that takes the boundary of then-cube tox0 and the interior intoY .
See, for example [19].
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plane is mapped onto the sphere, with the boundary of the square corresponding to a fixed
point on the sphere.

If one chooses an arbitrary pointO, a family of closed parametrized curves withO
as origin, and a set of maps that associate with each curve an affine transformation of the
tangent space atO, these transformations form a group known as the holonomy group at
O. An expression for the loop space holonomy characterizing the non-Abelian flux through
a closed surface may then be written, in terms of the parametrized loop space, as†

2(6) = Pt exp
∫ 2π

0
dt
∫ 2π

0
ds U−1

ξt
(s, 0)Gµν [ξt (s)]Uξt (s, 0)

dξµt (s)

dt

dξνt (s)

ds
(27)

where

Uξt (s, 0) = Ps exp
∫ s

0
ds Aµ[ξt (s)]

dξµt (s)

ds
. (28)

In the more compact symbolic notation used earlier,2(6) may be written as

2(6) = Pt exp
∫
6

G. (29)

Note that the left-hand side of equation (24) is identical to the right-hand side of
equation (29) with∂M identified with6. The value of the integral in equation (27) does
not depend on the parametrization of the loops. Bralić used 06 s, τ 6 1 whereasτ is
replaced here byt and the range is changed to 06 s, t 6 2π to be consistent with Chan
and Tsou.

With the identification given above between Polyakov’s loop parametrization and the
sheet parametrization used by Bralić, Chan and Tsou’s2(6) is formally equivalent to the
sheet variableS(ξ) defined by Bralíc. This can be seen by using the multiplicative derivative
introduced by Gantmacher,

DtX = dX

dt
X−1. (30)

Applied to2(6) this gives

Dt2(6) = d

dt
(2(6))2(6)−1

=
∫ 2π

0
ds U−1

ξt
(s, 0)Gµν [ξt (s)]Uξt (s, 0)

dξµt (s)

dt

dξνt (s)

ds
=: A. (31)

A similar expression appears in the review by Goddard and Olive [22] where it is credited
to Christ [23] and Goldstone (unpublished 1976 lectures).

Thus,

d

dt
(26(t)) = A26(t) (32)

so that2(6) is equivalent toS(ξ) defined by Bralíc.
The value of2(6) depends on the gauge group and whether or not a monopole is

contained within6. If the gauge group is SU(n)/Zn, the n different gauge types can be
characterized byπ1(SU(n)/Zn) = Zn. As discussed earlier,Zn is the cyclic group of order

† The expressionU−1
ξt
(s, 0)Gµν [ξt (s)]Uξt (s, 0) dξνt (s)

ds is viewed by Chanet al as a connection in loop space. They
have used this to define a corresponding curvature, the vanishing of which implies that there are no monopoles
present. The vanishing of the loop space curvature then has the same physical content as the Bianchi identity
of Abelian electromagnetism (see [21]). Note that the ‘connection’ as defined by Chanet al differs from that of
Bralić.
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n that is the centre of the gauge group, and its elements may be conveniently labelled by
the nth roots of unity. The charge† enclosed by6 may then be labelled by the loop space
holonomy; i.e. the value of2(6) corresponding to the different gauge types can then be
labelled(L) by

L[2(6)] = exp(i2πr/n)In r = 0, 1, 2, . . . , (n− 1) (33)

whereIn is then × n unit matrix. L[2(6)] = In, corresponding tor = 0, indicates the
absence of a monopole.

The value of2(6) given by equation (29) can be taken as a definition of the ‘period’
needed to express a non-Abelian form of de Rham’s theorem, at least for the 2-form matrices
G(y) discussed above. For this to make sense, it is explicitly assumed that if the spaceM
contains any monopoles, they are isolated by boundary components of the space. Thus, ifM
has only one boundary component isolating a single monopole, thenPt exp

∫
6
G must, by the

generalized Stokes theorem of equation (24), be the identity matrix sinceG(y) is a closed 2-
form matrix inM. The implications of this are similar to those for Abelian monopoles where
the topology assumed for a spacelike hypersurface in a spacetime containing a monopole is
alsoR3− {0}:

If the space containing a monopole is assumed to be unbounded, save for the
boundary isolating the monopole, with spatial topology equivalent toR3− {0}, then
a single isolated non-Abelian monopole, with2(6) 6= In, cannot exist.

If, on the other hand,M hasm boundary components such that
∑m

i=1 aizi = ∂M,
the zi being the boundary component 2-cycles, and theai constants, then by assuming
a parametrized set of loops for each of thezi , one must have by the generalized Stokes
theorem of equation (24)

m∑
i=1

aiPt exp
∫
zi

G = Pt exp
∫
∂M
G = Pt exp

∫
M

dG = In (34)

where dG vanishes becauseG is a closed 2-form matrix inM. All of the periods are group
elements, and the physical meaning of this equation is that the sum of the non-Abelian
flux over all boundary components must yield the identity matrix. Differently charged
monopoles, each isolated by a boundary component, could exist—provided one maintains
consistency with the limitations imposed by equation (34).

Given that the periods of equation (34) are group elements, some discussion of the
meaning of the addition operation in this expression may be of value. The law of
addition is the group law of combination in the fundamental group of the homotopy
classes that correspond to the different monopole types. Since the fundamental group
π1(SU(n)/Zn) = Zn is an Abelian subgroup of SU(n), it is not only independent of the
base point, but independent of the path connecting different base points. Similarly, the value
of 2(6) in equation (27) does not depend on the location of the base point used for the
parametrized set of loops. This means, for example, that ifM has two boundary components,
for the purposes of computation one may identify the two base points of the parametrized
set of loops associated with each boundary component. If one then reparametrizes with
respect tot , as t ranges from 0 to 2π , the concatenation of the two sets of loops allows

† Corrigan and Olive [9] and Chanet al [24] have shown that the relationship between the non-Abelian electric
and magnetic charge for each of the gauge types isg = r/2ne, wherer = 0, 1, . . . , (n− 1). For U(1)×G, where
G is any compact, semisimple group, the number of possible intersections of U(1) andG are finite and lie in a
cyclic subgroup of the centre ofG. If p is the number of elements in this subgroup, the generalization of the
Dirac quantization conditioneg = n/2, n = ±1,±2, . . . is eg = n/2p, n having the range just stated.
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the loops to cover both boundary components with the law of combination being that of
combination in the fundamental group of homotopy classes. This is the same addition law
as that used by Lubkin [17] when considering the addition or combination of two ‘bags’.

Consider SU(2)/Z2
∼= SO(3), which is obtained from SU(2) by identifying pairs of

elements with opposite signs; since the group SU(2) has the topology of the hyperspherical
surfaceS3, one must identify antipodal points onS3 to obtain the group manifold of
SO(3). All closed curves in SO(3) thus fall into two homotopy classes corresponding
to the fundamental groupZ2: those that wind around SO(3) once, and cannot be smoothly
contracted to a point, and those which wind around twice and can be so contracted. If both
boundary components ofM are now assumed to contain a monopole, as the loops range
over the first boundary component a path is traced out halfway around the surfaceS3; this
is a closed curve since antipodal points are identified, and it cannot be smoothly contracted
to a point. As the loops range over the second boundary component, a second such path is
traced out inS3 which, when combined with the first yields a closed curve onS3 which now
can be continuously contracted to a point. Thus, for SU(2)/Z2 two monopoles combine to
give a ‘charge’ of zero so that a monopole is its own antimonopole [15].

A possible statement of a non-Abelian version of de Rham’s theorems is now
straightforward. IfG is a closed 2-form matrix, for each 2-cyclez one can define a period
of G by Pt exp

∫
z G. de Rham’s theorems can then be expressed for the non-Abelian gauge

potentialA and the corresponding field strengthG as follows.

I. The closed 2-form matrixG is exact if and only if all its periods yield the identity
matrix.

Note that this does not imply the existence of a uniqueA, consistent with the results of
Wu and Yang [3] that the field strength does not determine a unique gauge potential.

If ∂M has more than one component, and all of the periods do not yield the identity
matrix, then the non-Abelian version of the second of de Rham’s theorems would be as
follows.

II. If each 2-cyclez is assigned an element in the centre of the gauge group,per(z),
there is closed 2-form matrixG which has the assigned periodsPt exp

∫
z G = per(z)

for each 2-cyclez (subject to the consistency relation
∑

m ai per(zi ) = In if
∑

m aizi
is a boundary).

Here aglobal non-Abelian gauge potential does not exist. The consistency relation,
which comes from equation (34), continues to hold since dG still vanishes becauseG
remains a closed 2-form matrix inM (the Bianchi identity guarantees this as shown by
equation (21)).

It should also be noted that, unlike the Abelian case, if one constructs a cover for the
spaceR3 − {0} containing a single isolated monopole (despite the fact that this possibility
has been ruled out above), where the gauge potential on each element of the cover is related
by A′ = g−1Ag+ g−1 dg, the field (curvature) on the different elements of the cover is not
identical. In fact, the gauge transformationA′ = g−1Ag+ g−1 dg implies thatG′ = g−1Gg

or G(y)′ = g−1(a)G(y)g(a), so that the field on different elements of the cover depends on
a gauge rotation, which is position independent in the case ofG. As mentioned above, the
field strength does not uniquely determine the gauge potential, although one may choose a
specialized gauge where this is the case [25].



Monopoles, gauge fields and de Rham’s theorems 7091

Acknowledgment

This work was supported in part by the US Department of Energy under contract no W-31-
109-ENG-38.

Appendix A

de Rham’s theorems applied to electromagnetics specify the conditions needed for the global
existence of a vector potentialA. To facilitate contact with de Rham’s theorems, the vector
potential is replaced by a 1-formA and the magnetic field by a 2-formB. If A is a 1-form
such that dA = B, then the Poincaré lemma states that dB is a closed form; that is, dB = 0.
Locally, the converse of the Poincaré lemma is also true: ifB is a closed 2-form, then there
is a 1-formA such thatB = dA, which means thatB is an exact form†. In general, no
such 1-form existsglobally.

de Rham’s theorems, which specify the conditions needed for the global existence ofA,
are perhaps most easily understood in the form given by Flanders [26]. They need not be
restricted to 2-forms but hold forp-forms. In general then, ifω is a closedp-form, for each
p-cycle‡ z one can define a period ofω by

∫
z ω. The period only depends on the homology

class ofz. If z is a boundary, then by Stokes’ theorem the period vanishes. Therefore, if∑
aizi = boundary, then

∑
ai
∫
zi
ω = 0. de Rham’s first and second theorems can then

be expressed as follows.

I. A closed p-form is exact if and only if all its periods vanish.

II. If each p-cyclez is assigned a number,per(z), there is a closed p-formω which
has the assigned periods

∫
z ω = per(z) for each p-cyclez (subject to the consistency

relation
∑
ai per(zi ) = 0 if

∑
aizi is a boundary).

If ω is set equal to the 2-formB, the substance of de Rham’s first theorem is as follows.
Since the magnetic fieldB is solenoidal(dB = 0), a vector potentialA exists locally such
that B = dA; i.e. B is locally exact. ForA to exist globally, the closed surface periods∫
z B must vanish (z being a 2-cycle). Another way of stating the first theorem uses the

cohomology groupHp(M,R), whereM is an n-dimensional differential manifold. The
groupHp(M,R) is isomorphic to the factor group of the group of closedp-forms onM
by the subgroup of exactp-forms onM. Thus, the statement that every closedp-form on
M is exact is equivalent toHp(M,R) = 0. The second of de Rham’s theorems deals with
the case where a global vector potential does not exist.

† In general, the domain within which a closedp-form will be exact depends onp: if p = 0, the domain must
be connected; ifp = 1, the domain must be simply connected; and ifp = 2, one must be able to shrink any
spherical surface to a point.
‡ If one generalizes the concept of the triangulation of a surface to higher-dimensional spaces where the basic
elements of the triangulation aren-simplices, recall that a cycle is defined as a chain whose boundary vanishes,
while ann-chain is a formal sum, with constant coefficients, ofn-simplices. The collection of alln-cycles forms
the n-dimensional cycle groupZn, while the collection of alln-boundaries forms then-dimensional boundary
group Bn. The factor or quotient groupHn = Zn/Bn is known as then-dimensional homology group. The
elements ofHn are called homology classes, and cycles in the same homology class are said to be homologous.
TheHn can be given a geometrical interpretation:H0 is a measure of the number of connected components of the
space;H1 of the number of closed curves that are not boundaries of a two-dimensional part of the space; andH2

measures the number of closed two-dimensional surfaces that are not boundaries of some three-dimensional part
of the space.
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Figure 6. (a) The contour0 bounding the capSA is shown on the open setA (the origin and
negativez-axis has been deleted); (b) the contour0 bounding the capSB is shown on the open
setB (the origin and positivez-axis has been deleted); and (c), the contour0 is shown on the
open setA ∩ B where the entirez-axis has been deleted. A possible cut needed to make the
scalar functionχ single-valued is indicated by the cross-hatching.

Appendix B

B.1. The total flux

With reference to figure 6, the equation

Aa − Ab = dχ (B.1)

can be integrated around a closed contour,0, on a sphere isolating the monopole to obtain∫
0

Aa −
∫
0

Ab =
∫
0

dχ. (B.2)

Note that the first integral is defined on the setA, the second on the setB, and the third
on A ∩ B.

The integral,
∫
0
Aa, is the flux throughSA. The second integral,

∫
0
Ab, is the flux

throughSB , but a minus sign must be introduced because of the relative orientation of the
normal to this surface and the contour0. If one introduces the usual spherical coordinates,
the total flux is explicitly given by

8 = m

r2

∫ 2π

0
dφ
∫ θ

0
r2 sinθ dθ + m

r2

∫ 2π

0
dφ
∫ π

θ

r2 sinθ dθ = 4πm. (B.3)

As seen in figure 6(c), the integral,
∫
0

dχ , is not trivially zero by Stokes’ theorem
because the contour0 cannot be smoothly contracted to a point onA ∩ B if it circles the
z-axis. To evaluate this integral one must make a cut that consists, for example, of the
half-planey = 0 bounded by thez-axis. The value of the integral is then the jump in
crossing this plane and is equal to the total monopole flux (see [7]).

Let us briefly return to figure 6(a) where the contour0 is shown bounding the cap
SA. Topologically, the capSA bounded by0 is homeomorphic to the closed disk̄D2. It
is often stated in the literature that asθ → π the contour0 shrinks to zero yielding the
closed surface of the sphere. Such a transformation takes a surface with a boundary into a
surface without a boundary, and cannot be a topological mapping since it does not preserve
interior and boundary points, which have different local homology groups. The sphereS2

is homeomorphic toR2 andD2, the open disk, not̄D2. It is the factor spacēD2/S1 that is
homeomorphic toS2.
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B.2. The Dirac quantization condition

For a classical charged particle, the equation of motion may be written as

me
d2xµ

ds2
− eFµν dxν

ds
= 0 (B.4)

whereme is the mass of a particle with chargee, andFµν is the electromagnetic field tensor.
The corresponding action is

S[x(τ)] = −me
∫

ds − e
∫
Aµ dxµ. (B.5)

In the spaceA∪B = R3−{0} there is no globally defined vector potential, and consequently
equation (B.5) is not in a usable form. However, if one chooses the pathx(τ) to be a closed
spacetime path†, the action can be written, using Stokes’ theorem as

S[x(τ)] = −me
∫

ds − e
∫
6

F (B.6)

where6 is the surface spanned by the closed pathx(τ), and F is the electromagnetic
2-form. Consider only the last term. In the context of the above formalism, this term
becomes

S[0] = −e
∫
0

dχ. (B.7)

In quantum mechanics, for exp(iS/h̄) to be well defined (single-valued), one must have∫
0

dχ = nh

e
. (B.8)

However the integral,
∫
0

dχ is the total flux of the monopole which is 4πm, so that
m = nh̄/2e, which is Dirac’s quantization condition. It should be noted that there is
nothing in the topology that mandates the quantization of the monopole field. It is simply
the requirement that exp(iS/h̄) is single-valued that is responsible for this condition.
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