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The general approach tc cylindrically symmetric force-free magnetic fields first introduced by
List and Schliiter {Z. Astrophys. 34, 263 (1954)}], is restricted to fields of the form

H= [O,H¢(r) H,{r}], and subsequently used to determine a set of solutions to the force-free
field equations with nonconstant a. The first element of the set is the well-known constant

a solution of Lundquist [Ark. Fys. 2, 361 (1951)]. These solutions may have practical
applications with respect to high-temperature superconductors.

L. INTRODUCTION

In past years, there has been great interest in force-
reduced magnets for thermonuclear and energy storage ap-
plications where high magnetic fields are needed. It is, for
example, possible to design a truly force-free coil sur-
rounded by a force-bearing ring.' Today, there is renewed
interest in force-reduced magnetic field configurations due
to the recent discovery of high-temperature superconduc-
tors. Because the materials that exhibit such behavior tend
to be quite brittle, it is important to reduce the forces they
might experience if they are to be used for high-field ap-
plications. In addition, Furth? has raised the possibility
that force-free field configurations may have the potential
to raise the critical magnetic field and current-density lim-
its in such superconductors.

For finite force-free magnetic field configurations the
virial theorem, which can be used to relate the stored mag-
netic energy of the system to the integral of the trace of the
stress tensor over the magnetic field volume, sets limits that
must be obeyed in practice. While stresses may be elimi-
nated in a given region, they cannot be cancelled every-
where. In general, the use of force-free field configurations
allow the forces needed to balance the outward pressure of
the magnetic field to be reduced in magnitude by spreading
them out over a larger region. While the virial theorem
does indeed set limits for the minimum amount of struc-
ture required for magnets made of materials having a given
strength, force-free configurations nonetheless appear to
have the potential to contribute to improved designs for
large magnets.

The virial theorem originally evolved cut of the kinetic
theory of gases, and was first extended to include magnetic
fields by Chandrasekhar and Fermi.® For a clear discussion
of the application of the virial theorem, see the paper by
Parker.?

ti. FORCE-FREE MAGNETIC FIELDS

The possibility that cosmic magnetic fields might sat-
isfy the condition that the magnetic field in some region is
everywhere parallel to the direction of current flow,

(VXH}XH =0, (1)
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was apparently first considered by Liist and Schliiter.” For
the latter equation to hold, H must satisfy

X H = aH, (2}
where a is in general a function of position. Since

H =0, (33
it follows that

vaH = 0. (4)

This means that « is a constant on any given field line, and
if the field lines cover a surface, then « is a constant on that
surface.

Chandrasekhar® obtained an explicit solution for the
case where o = const and where H has axial symmetry,
and Furth ef al” considered a more general case where a is
a function of 7H,. Furth et al. expressed the basic equations
in terms of the vector potential, and for the case of a linear
relationship between the azimuthal components of the cur-
rent and vector potential (equivalent to setting o equal to
a constant) obtained the solution

Hy=4 cos(kz)J[r(a®— k")), (5)
B =4[ {(a*— ) /alcos{kz)Jo[r(a? — K2 V2Y,  (6)
H,=A(k/a)sin(kz)Jy[r(a®— k31721, (7)

where 4 and & are constants. For k=0, the radial compo-
nent vanishes and this becomes the solution given by
Lundquist,® which represents the first element of the set of
solutions given below.

Hi. CYLINDRICALLY SYMMETRIC FIELDS

The approach to cylindrically symmetric fields given
here is based on that introduced by Liist and Schliiter® and
used by Chandrasekhar.® The condition that none of the
components of a magnetic field have an azimuthal depen-
dence means that B can be written as a sum of a toroidal
and a poloidal field:

H= 2 XrT(rz) +9x{Z XzP(rz)}]. (8)

Here the axis of symmetry is along Z and the functions 7
and P respectively generate the toroidal and poloidal fields.
Expressing the first term on the right-hand side of this
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equation in terms of the azimuthal coordinate ¢, and ex-
panding the triple vector product in the second term allows
the general form for H to be written as

3P(rz) o3 1arP(rz)
gy ¥ +F (r,z)¢u+;———rz.

=7
(93

Computing ¥ X H and using VX H = oH, the expressions
for the T and Z components combine to give

a¥V(r*Py=V{r°7T), (10)
while the ?b component yicids

PP 33P P

255 taz=—al. (i1)

Now one can either use the component form of Eq. (10) or
Ve = 0 with the general form of H given by Eq. (9) to
obtain

3(r?P) Ba A 8(#*P)

dr 9z or oz =0. (12}
This is the same as
¥(r2P) X Va=0. (13)

Thus, Va and V{(r2P) are in the same direction, and o
= a(r’P) is only a function of »2P. By again considering
the component form of Eq. (10), the relationship between
a and r°T can be written

rir= f al(r’Pyd(r’P). (14)

Thus far, the only constraint imposed on the force-free
field equations has been that none of the components of the
magnetic field have an azimuthal dependence. Consider
now the case where H = [0,H,(r),H,(r)]. For this form of
H, the equations are compietely solvable for & = const and
solvable in terms of an arbitrary function of r if ¢ is not a
constant. In addition, it can be seen from Eq. (9) that for
this case P and T are only functions of r. The basic equa-
tions, Eqs. (10}, (11), and (12), then become

2(riPy d(r’T)
f¢ 4 ==

dr dr (13)
@*P 3dP
d{rP) da

dr  dz (a7

In the last equation, da/dz=0 since « is a function of
#2P and P is only a function of ~

tv. SOLUTIONS TO THE FORCE-FREE FIELD
EQUATIONS

Consider first the case where a = const. Eguation (14)
is then immediately integrable to ¥T'=arP. Substituting for
T in Eg. (16} yields
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1d ‘d(rP)\ 5 i
“;d”—r (i ar ) -+ (a _7) YP:O, (18)

which is Bessel's equation for #F Apart from a constant,
the solution for Pand Tis P = J{ar)/rand T = aP
= aJ;(ar)/r, respectively. Using this result in the general
expression for the magnetic field, Eq. (9), gives

H=AJ(ar) ¢ + Ady(ar) 2, (19)

where 4 is an arbitrary constant. This is the well-known
result obtained by Lundquist.”

In the case that « is not a constant, the expression for
o given by Eg. (15), and the fact that

H T and H LAG7P) 20
o=rT and Hy=-—p {20}
can be used to rewrite Bg. (16) as
1 dH, 1 1d{(rHy)
Pt g, (21)

H,d THr d
Building on the work of Alfvén,” who introduced a new
variable k = Hy/H, Murty'’ obtained the differential
eguation

\ dH, i k d(kr)

H, o dr (1K r dr

(22)

Because k is the tangent of the angle between H and 7,
finding k£ and &, sclves the problem. By separating this
eguation in terms of an arbitrary function of » Murty
found that the solution could be written as

H,=H, exp( — f <I>(r)dr) (23)
0

and

Kr=2r—2 exp@ f @(r)dr)

X fr (D(r)rzcxp(—42 f fb(r)dr)drn (24}
o

A somewhat different approach will be used here. In-
stead of introducing the new variable &, first multiply Eq.
(21} by H,H, and then separate in terms of an arbitrary
function to obtain

dA,

H, ==~ ¢(r) (25)
and
1 d(rHy)
b =), (26)

The first eguation can be immediately integrated,

Hi=—2 ( p{r)dr+ C, (27

where C is an arbitrary constant of integration.
By defining a new variable, &, such that Hiﬁ =y~ ! the
second equation becomes
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du wu 3 0
ar T ¢l =0.
This is Bernoulli’s equation. [The equation that results
from separating Eq. (22) in terms of an arbitrary function
${r) also resulis in a form of Bernoulli’s equation.] It is
reducible to the standard form of a linear equation of the
first order, and has the sclution

(28}

Hiy=dAr?+2r? j @(ryr* dr, (29)
where 4 is an arbitrary constant of integration which is
henceforth set equal to zero to guarantee that H, is finite
on the z axis (for the same reason, the constant associated
with the integration on the right-hand side of the equation
is also set equal to zero). The solution given here, and that
of Murty, are clearly related by & simple transformation.

The problem has thus been reduced to finding those
functions (7} that correspond to physically interesting re-
sults.

V. A CLASS OF NONCOMNSTANT o« SOLUTIONS

If Egs. (27) and (29) are differentiated, and the com-
ponents of ¥ set equal to the constant « values in Eq. {19),
it is immediately apparent that @(r) = Jo{#)J;{r). This
suggests that functions of the form

Plry= 2 uCalr)D,(r), (30)

nm=0

where C, and D, are cylinder functions, and the a,,, are
appropriately chosen constants, may be of interest. Such
functions lead to integrals of the form

f C.(rYD,,(r)dr and f P2C (ry D, (r)dr
when determining /; and H,. While such integrals are in
general guite difficult to evaluate, the following two expres-

sions given by Luke'! allow the integrals to be evalvated
for special cases:

f A0, (D= /;o Tt k(2 (31}

(pra+v [ PICOD0

+ (p—p—v—2) J #71C, (D, 4 ((0)dr

=2{C(2)D,(2) + C, 1 1(2)D, (2} ]

Setting g = 3 in the second equation gives

(32}

(3+p+v) f £C, (1D, (1)ds

+ (l—p—v) fz £C,  1(D)D, , {)dt
=2[C,(2)D(2) + C, 1 1(2)P, ()] (33)
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Restricting consideration henceforth to Bessel functions of
the first kind, and of integer order (relabel y by m and v by
n) with real arguments, there are two cases that prima
Jfacie appear to be promising: n=m + | and n=—m 4+ L.

A Case 1: n=m+1

Substituting n=m + 1 into Eq. (33}, it can be seen
that an appropriate choice for the arbitrary separation
function in Egs. (25} and (26) is

@(ry =3 (m + D (P 1 (1) = 1 (P (P ]
(34)
The integral of Eq. (29) is straightforward and gives
H=(m+ D, (7). (35)

The right-hand side is positive definite for all values of 7, 50
that H is well defined. Using Eq. (31), the integral of Eq.
(27) is

Hi=—(m+2) 2 Jrpsi(7)
k=0

+m kZO P kaam +C (36)

Using the relation
Bry 42 ; Ay =1, (37

c=1

H? can be written as

H=—14+0(r+2 RZI FAry—ml% (1) + C.
- (38)

If m =0, this solution will match the constant « solution of
Lundquist if C=1. However, setting C=1 will allow HZ to
be negative for some values of r, thus making H, pure
imaginary for these values.

B. Case 2: n=—m-1

Proceeding in the same manner, subsiitution of
r=—m + 1 into Eq. (33) suggests that p(») be chosen as

(39)

@{F)=F, (¥}, _1{F).

FIG. 1. Magnetic field components H,(7), H,(x}, and the function a(7)
for m=2.
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The constant ¢ case then corresponds to m=1. Substitu-
tion of Eq. (39) into Eqgs. (27} and (29) yields, setting the
constant of integration again equal to unity,

B=R(), m=1,

m—1

=R +2 2 Jin, m>1, (40)
k=1

and

Hy= (/2 I (Wi () —d (W a3 ], (41)

Both Egs. (40) and (41) are positive over the whole range
of 7, and therefore constitute a well-defined set of solutions

(P ()

to the force-free field equations that reduce to the Lun-
dguist solution for m=1.

An expression for the function a(r) can readily be ob-
tained from Eqgs. (15) and (20),

b 1d(ri,)
a(r)=1‘§;; A (42}
Or, using Egs. {27) and (29),
p(r)
=l 43
af{r} T, (43)
Substituting from Egs. (39), (40), and (41}
m> 1. (44)

alrj=

{21093 a7} =T (1) 2 (1) ]}m(

For m=1, Eq. (43} gives a constant value, a{r/=1, as
expected. The general behavior of H,(r), Hy(r), and a(r)
is shown in Fig. 1.

The angle between H and the z axis is given by
tan—z(HMHz) and is shown in Fig. 2 . Note that the be-
havior shown in Fig. 2 is significantly different than that of
the Lundquist solution given by m=1.

¥i. CONCLUSION

The general approach to force-free magnetic fields in-
troduced by List and Schliiter and used by Chan-
drasekhar, restricted to fields of the form H
= [0,H(r),H,(r)}, was used to obtain a differential equa-
tion [Eq. {21)] that could be solved for H; and H, in terms

(radians)

0.2 m=2

tan~1[Hy(r)/H,(r)]

FIG. 2. Angle tan“{H¢(r)/Hz(r)] between H and the z axis for m=2,
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m—1 \1/’2?

By +2 2 Ji(r))
k=1

of an arbitrary separation function @(7)}. The form of this
function needed to obtain the well known constant « solu-
tion of Lundquist then suggested a class of functions that
result, for special cases, in integrable expressions for H,
and H, Members of this class were then used to determine
two sets of sclutions to the force-free field equations with
nonconstant «.

In practical applications, the various constants associ-
ated with the solutions would be chosen to both match
required boundary conditions and ensure real values of the
field over the range of r of interest.
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