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Group theoretical methods did not receive a warm reception when introduced into the 
physics community.  As put by John Slater in his 1975 autobiography, �“Wigner, Hund, 
Heitler, and Weil entered the picture with their �‘Gruppenpest�’ . . . The authors of the 
�‘Gruppenpest wrote papers which were incomprehensible to those like me who had not 
studied group theory . . . The practical consequences appeared to be negligible, but 
everyone felt that to be in the mainstream one had to learn about it. . . .It was a frustrating 
experience, worthy of the name of a pest.�”   
 
The �“pest�” was never vanquished.  Today, group theory is fundamental to the Standard 
Model of particle physics and plays an important role in many other areas of physics as 
well. The introduction of groups into physics could be thought of as comparable to Adam 
Smith�’s introduction in his Wealth of Nations of the �“Invisible Hand�” into economics; 
with a little poetic license, groups could be said to play the role of Nature�’s Invisible 
Hand.   
 
This essay will take the reader from some elementary ideas about groups to the essence 
of the Standard Model. 
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Introduction 
It is the purpose of this essay to take the reader from some elementary ideas about groups 

to the essence of the Standard Model of particle physics along a relatively straight and 

intuitive path.  Groups, from a pedagogical point of view, are usually introduced 

relatively late in a physics education.  I will begin with them here to arrive at a semblance 

of the Dirac equation.  This is followed by introducing the very essence of elementary 

quantum theory to obtain the actual Dirac equation, which governs the motion of the 

quarks and leptons of the Standard Model.  An introduction to the gauge principle is then 

given and this will take us via the groups introduced in the beginning to an introduction 

to the Standard Model.  In following this path, many technical details, and much of the 

physics, will be ignored.  The idea is to give an Olympian view of this evolution, one that 

is often missing when absorbing the detailed subject matter of the Standard Model as 

presented in an historical approach to the subject. 

 

Groups 
In discussing the general mathematical idea of symmetry, Herman Weyl made the 

statement: �“As far as I see, all a priori statements in physics have their origin in 

symmetry.�”  But even our earliest perceptions of space and time and the invariance 

associated with them lead to the concept of groups. 

 

The limited material introduced here from the vast field of group theory attempts to avoid 

the extensive background needed for a precise presentation.  It also draws on how the 

material is often presented in the physics literature, which is often imprecise if not down 

right sloppy from a mathematical perspective.  Even so, since most of the potential 

readers of this essay are expected to be from the physics community, it is important to 

make the connection to the physics literature.  As much as possible, the notation is 

consistent with that used in physics. 

 

When speaking of symmetry in quantum field theory one often defines different types of 

symmetry, the broadest division being into manifest symmetry, meaning the apparent 
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type of symmetry found in the translation or rotation groups, and hidden symmetry where 

the symmetry only appears for special values of a parameter.  This is the type that will be 

discussed below when symmetry breaking is introduced.  There is a further distinction 

into local and global symmetries where local means that the parameters of the group 

depend on space-time location whereas global symmetries do not.  Local symmetry, and 

its relation to dynamics is the foundation of all gauge theories. 

 

Groups are abstract entities that are defined very broadly.  They are required to satisfy the 

requirements that they have a closed binary operation that is associative, an identity 

element (also sometimes called a unit element), and each element must have an inverse. 

The closure property guarantees that the binary composition operation does not result in 

elements outside of the group. Group representations allows groups to act on vector 

spaces over fields such as the real or imaginary numbers.  Groups can, and often do, have 

representations as matrices, and this is the representation that will be used here.  For the 

cognoscenti, a matrix representation of a group G is a homomorphism (a mapping that 

preserves the group structure) from G onto GL(n, R) or GL(n, C). 

 

Our focus will be on continuous groups (Lie groups) and we will begin with the simplest 

example of such a group, the set of all complex phase factors U = e i .  These phase 

factors form a unitary group called U(1), which when treated as a manifold (a Lie group) 

is 1-dimensional.  Here unitary simply refers to all complex numbers with modulus unity. 

 

Let us move on to two dimensions.  If x1 and x2 are the coordinates of a point in a plane, 

we can transform these coordinates by use of a linear transformation represented by a real 

matrix; that is, if x is a one by two column matrix with entries x1 and x2, x´ = Ax, or 

x1
x2

= a11 a12
a21 a22

x1
x2
.  

If the det(A) = a11a22 a12a21  0, and we require that length be preserved so that 

x1
2
+ x2

2
= x1

2 + x2
2, there will be constraints on the elements of the matrix A.  Simply 

substituting the transformation above into the latter expression for the requirement that 

the length be preserved results in the conditions: 
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a11
2 + a21

2 = 1, a11a12 + a21a22 = 0, a12
2 + a22

2 = 1,  

which in turn imply that a11a22 a12a21
2
= 1, or det A = ±1 .  The transformation is a 

rotation and the plus sign corresponds to a proper rotation and the minus to one that 

changes the orientation.  We will restrict further consideration to only proper rotations 

where det(A) = +1.  There are three conditions here imposed on four parameters leaving 

only one free parameter.  This, of course corresponds to the angle of rotation in the plane.  

It is readily confirmed that these transformations form a group, which is known as the 

special orthogonal group in two dimensions, SO(2), and the term �“special�” corresponds to 

the choice of det(A) = +1.  The requirement that the length be invariant can easily be 

extended to higher Euclidean dimensions to yield the groups SO(N). 

 

A Hilbert space is a linear space over the field of complex numbers, meaning that if  

and  are vectors in a Hilbert space then  +  is in the Hilbert space as is c , where c is 

any complex number.  More precisely, a Hilbert space is an inner product space, which�—

as a metric space�—is complete.  In quantum mechanics the state of a system is a unit 

vector in Hilbert space.  Any symmetry will then be connected to a unitary or anti-unitary 

transformation on this space (the unitary property will be discussed shortly).   

 

Suppose we now allow the entries aij in the transformation matrix above to be complex 

numbers, and in addition require the transformation to have  x1
2
+ x2

2
 as an invariant.  

As above, we now obtain the conditions 

a11
2
+ a21

2
= 1, a12

2
+ a22

2
= 1, a11a12

* + a21a22
* = 0.  

These conditions are equivalent to requiring A�†A = 1, and the determinant of the matrix 

has modulus unity.  Here �† designates the transpose of the matrix and the complex 

conjugate of the elements.  This is known as the Hermitian conjugate while * is the 

complex conjugate.  Matrices satisfying these requirements belong to the representation 

of the unitary group U(2).  If we now add the additional requirement that the determinant 

of the matrix is unity, this will result in a11
2
+ a12

2
= 1 , and the transformation matrix 

will have the special form 
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a11 a12
a12
* a11

* .  

From the original eight free parameters there are now only three.  These matrices are 

known as the special unitary matrices for two dimensions or SU(2). Special unitary 

transformations are especially important in quantum mechanics and for what follows.  

Higher dimensional special unitary groups may also be defined and are known as SU(N), 

and SU(3) will play an important role later. 

 

Two other concepts from group theory will be relevant in what follows, that of a normal 

subgroup and a factor group.  If one has a group G and an element g where g  G, and a 

subgroup N  G, if N is a normal subgroup then Ng, the set of all elements of N 

multiplied by g  G on the right, is the same as the set of all elements of N multiplied by 

g on the left; that is gN = Ng or gN �– Ng = 0.  Another way of writing this is gNg 1 = N, 

which means that N is left invariant by every inner automorphism of G.  When this is the 

case, N is said to be self-conjugate.  If a group contains normal subgroups then it may be 

expressed as being made up of smaller groups.  The expression gN is known as a coset 

and when N is normal the cosets themselves form a group known as a factor (or quotient) 

group written G/N.  One says that the group of cosets of N under the induced operation 

(taken from G) is the factor group of G modulo N.  Although it is often said that the 

cosets are residue classes of G modulo N, it might be better to say that the left cosets are 

residue classes of the group homomorphism f:G G/N defined by g gN, and similarly 

for the right cosets.  Groups having no non-trivial normal subgroups are known as simple 

groups; that is, a simple group G has only the identity and G as normal subgroups.  The 

Standard Model of particle physics is made up of products of simple groups.   

 

Matrix representations were introduced above as a homomorphism from a group G onto 

GL(n, R) or GL(n, C); these groups operate on a vector space V over the real or complex 

numbers.  A reducible representation is one where the vector space contains an invariant 

subspace�—one that gets mapped onto itself; if the representation contains no such 

invariant subspace it is called irreducible. Irreducible representations are the building 
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blocks for all finite-dimensional completely reducible representations.   

 

Here are a few additional facts about normal (invariant) subgroups and their mappings:  

 

Suppose that N is a normal subgroup of G. Then there is a bijective�—one-to-one and 

onto�—mapping between irreducible representations of G/N and irreducible 

representations of G having N in the kernel; i.e., N is mapped onto the identity element.  

 

The direct product of the groups G and N is written as G × N.  If N is an invariant 

subgroup of G, then the group G is the direct product of the invariant subgroup N with the 

factor group G/N; that is, G  =  (G/N) × N.  

 

A group G is the direct product of its subgroups, say N1 and N2, if N1 and N2 are normal 

subgroups that are disjoint, that is, N1  N2 = Identity, and they generate the group so that 

G = N1 N2, where N1 N2 = { n1 n2 | n1  N1, n2  N2}. 

 

A Semblance of the Dirac Equation from Groups 
In quantum mechanics particles are characterized by, in addition to their positions in 

space and time: transformations which require the introduction of the Lorentz group of 

special relativity; electric charge; and transformations of any internal degrees of freedom 

such as spin.  To avoid the unnecessary complications that arise from the introduction of 

the inhomogeneous Lorentz, or Poincare group (which generally includes translations), 

the discussion to follow will be to a large extent restricted to the proper orthochronous 

Lorentz group. 

 

Eugene Wigner�’s contributions to the role of groups in physics are responsible for groups 

playing such an important role in the Standard Model.  In discussing Wigner�’s 

classification of the irreducible representations of the Poincaré group, the connection 

between groups and elementary particle has been succinctly stated by Sternberg: �“An 

elementary particle �‘is�’ an irreducible unitary representation of the group, G of physics, 
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where these representations are required to satisfy certain physically reasonable 

restrictions . . . .�”  

 

It is assumed in what follows that the reader is familiar with Minkowski space and 

special relativity, as well as the Dirac equation and its usual derivation and solutions.  

Our purpose here is to show that a semblance of the Dirac equation can be derived using 

only the properties of groups and special relativity.  The equation corresponds to the 

relationship between the two spinors that come from the representations (½,0) and (0, ½) 

of the Lorentz group.  Those not familiar with the spinor representations of the Lorentz 

group are directed to Appendix I. 

 

The discussion below is based on that given in Ryder�’s book on quantum field theory 

listed in the bibliography. 

 

Under a general Lorentz transformation, there are two types of 2-component spinors.  

They correspond to the right-handed, (½, 0), or the left-handed, (0, ½), representations of 

the Lorentz group.  These are two-dimensional representations that are interchanged by 

Hermitian conjugation.  The 2-spinors associated with each representation can be put 

together into a single 4-spinor with two components labeled R and L designating right 

and left helicity, which is defined as the component of spin in the direction of the 

momentum.  With the constraints given above, the 4-spinor would transform under a pure 

Lorentz transformation without rotation (proper Lorentz transformations include a boost 

and a rotation, which when composing non-colinear boosts leads to the Thomas 

precession) as  

= R

L
=

e
1
2 • 0
0 e

1
2 •

R

L
,  

where  are the 2×2 Pauli matrices and  is the hyperbolic angle for the Lorentz 

transformation; i.e., since 2 �– 2 2 = 1, one may set  = cosh ,  = sinh , where  

 = (1 v2/c2) 1/2 and  = v/c.  The reader is referred to Appendix I or the group theory 
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literature to fully understand how the exponential forms in the transformation matrix 

arise. 

 

Consider first R.  If the exponent of the relevant exponential is written as �–(i/2) �•(i ) 

and the exponential expanded one obtains 

R e
1
2 •

R = cosh 2 + •n sinh 2 R,  

where n is a unit vector in the direction of the Lorentz boost.  Now assume initially that 

R(0) is transformed by the boost to R(p); i.e., that the particle is initially at rest with 

momentum zero and the boost gives it momentum p.  Then from the hyperbolic half 

angle relations and the definition of cosh  and sinh  given in the paragraph above, as 

well as the fact that in units where c = 1 the total energy E of a particle with momentum p 

is E =  m, and noting that p is in the same direction as n, we obtain 

R p =
E + m + •p

2m E + m
1
2

R 0 .  

Similarly, for L e
1
2 •

L ,  

L p =
E + m •p

2m E + m
1
2

L 0 .  

For (0), the distinction between left and right becomes meaningless since for p = 0 the 

there is no direction of momentum to which the spin can be aligned.  Consequently, one 

can set L 0 = R 0 .  Using this and the definition of the four momentum, pµ = (E, p), 

the last two equations may be expressed in matrix form as 

m p0 + •p
p0 •p m

R p
L p

= 0.  

Remembering that this is a four dimensional matrix ( R, L, each have two components 

while , and p have three) one may define the four dimensional matrices 

p = R p
L p

, 0 = 0 1
1 0 ,

i = 0 i

i 0
,
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where 1 corresponds to the two by two identity matrix.  With these definitions, the 

previous matrix equation may be written as 
0p0 +

ipi m p = 0.
 

This is the promised semblance of the Dirac equation.  It was derived using only the 

properties of groups and special relativity.  The equation obtained corresponds to the 

relationship between the two spinors that come from the representations (1/2,0) and 

(0,1/2) of the Lorentz group.  To get the actual Dirac equation one must introduce some 

minimal elements of quantum mechanics. 

 

It should be noted here that the derivation above uses the chiral representation, so called 

because R and L are eigenstates of chirality (the term �“chirality�” being equivalent to 

�“handedness�”).  In the standard representation, generally used to study the Dirac 

equation, the definitions of the -matrices are different.   

 

Minimalist Quantum Mechanics 
The origination of quantum mechanics dates back to Max Planck in 1900 and his studies 

of heat radiation that led him to introduce the postulate that energy came in discrete, 

finite quanta of energy h .  Planck was awarded the 1918 Nobel Prize in Physics for his 

work but was never comfortable with the idea of quanta.  Nonetheless, essentially all of 

quantum theory follows from special relativity and Planck�’s discovery that E = h .  We 

will use this fact and de Broglie�’s discovery of the wave nature of matter to obtain what 

is required to convert the �“almost Dirac equation�” to the quantum mechanical version.  

 

De Broglie in his 1924 publication �“Recherches sur la Théorie des Quanta�” introduced 

the thesis that elementary particles had associated with them a wave, what we call the 

wave function, and what de Broglie called an �“onde de phase�” or a phase wave.  It is a 

consequence of the relation E = h .  In his 1929 Nobel lecture he used the following 

argument:   

p = mv = mc2 v
c2
= E v

c2
.  
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He now identifies the energy E of a massive particle with E = h  to give 

p = h
c2/v

.  

This identification is the key step used by de Broglie in deriving his relation.  Since the 

velocity of the massive particle is always less than that of light, so that c2/v > c, he states 

that �“qu�’il ne saurait être question d�’une onde transportant de l�’énenergie�” (it is not a 

question of a wave transporting energy).  Consequently, he makes another key 

assumption that c2/v corresponds to a phase velocity via vvph = c2, so that  

p = h
v ph/

.
 

Since vph = , de Broglie obtains his fundamental relation  p = h.   

 

The two relations, E = h  and  p = h allow us to derive what is needed to transform the 

�“semblance of the Dirac equation�” given above to the quantum mechanical version of the 

Dirac equation.  Start with a classical wave packet propagating in the k direction,  

r,t = F k e i k�•r t dk.  

Now use the two quantum mechanical relations we have to transform this to 

r,t = F p e i p�•r t / hdp.  

Take the time derivative to get one expression and the gradient to get a second: 

r,t
t = i

h E F p e i p�•r t / hdp,

r,t = i
h p F p e i p�•r t / hdp.

 

The first of these implies that E = ih t  and the second that p = ih .  By substituting 

these expressions for E and p into the expression for the 4-momentum pµ = (E, p) the 

semblance of the Dirac equation derived above from special relativity and group theory 

alone becomes the actual, quantum mechanical Dirac equation.   
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Gauge Principle 
The gauge principle is fundamental to the standard model of particle physics.  All of the 

observed interactions of elementary particles and their associated quanta are a result of 

vector fields created by the transition from global to local gauge symmetries.   

 

Let us begin with the electromagnetic field.  It is well known today�—for example from 

the Aharanov and Bohm experiment, that in the presence of an electromagnetic field the 

wave function of a charged particle acquires a phase factor that depends on the vector 

potential Aµ  (4-vector)  

x, t x, t = e
ie
h

Aµdx
µ

x, t . 

It is also true that this transformation is equivalent to what is known as �“minimal 

coupling�”�—the replacement in the free particle Lagrangian of the partial derivatives by 

the �“gauge-covariant�” derivative, µ Dµ = µ ieAµ .  

 

Writing the phase factor more generally as e ie x, t
,  if (x, t) is a constant, then x, t   

is a solution of the free-particle wave equation.  This corresponds to a global phase 

invariance since  is constant throughout space and time.  Allowing  to have a space- 

time dependence means we must introduce the electromagnetic field derivable from the 

4-potential Aµ.  Put another way, if µ  is replaced by Dµ = µ ieAµ  in the free-particle 

wave equation, the resulting wave equation can be made gauge invariant if both of the 

equations 

x, t x, t = e ie x, t x, t

Aµ Aµ
= Aµ µ x, t

 

are satisfied, thereby introducing a local phase invariance.  The 4-vector Aµ´ that results 

from allowing  to have a space-time dependence lets the vector potential be considered 

to be a gauge field, and the fact that the interaction is determined by this field is known as 

the gauge principle.  This principle also holds for relativistic equations like the free-

particle Dirac equation 
µ

µ + m x = 0.  
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When the transformation µ Dµ  is made to this equation it introduces the 

electromagnetic interaction, which, when radiative corrections are included, has been 

found to be correct to many decimal places. 

 

At this point, in order to generalize the covariant derivative for fields other than 

electromagnetism, we need to introduce the idea that continuous groups have 

infinitesimal group generators.  Above we saw that groups have parameters such as the 

angles of rotation.  If all of the parameters are set equal to zero, the group matrix 

representation becomes the identity element of the group.  For sufficiently small values 

of, say, k parameters i, an element of the group G( ) lying close to the identity may be 

represented as a Taylor series expansion  

G = G 0 + i
G
i i = 0

+ . . .
i = 1

k  

where G(0) is the identity matrix.  The infinitesimal group generators, Xi are 

Xi = G
i i = 0

.  

Given the group generators, the vector potential Aµ of electromagnetism associated with 

the group U(1) may be generalized to other groups such as SU(2) and SU(3), by using the 

generators of these groups to write 

Aµ x = Aµ

i x Xi,  
where the Aµ

i x  are ordinary vector fields and the Einstein summation convention is used 

here and in what follows.  Here there is a sum over the repeated index i so as to include 

all generators of the group.  The explicit matrix form for the generalized vector potential 

will be discussed below. 

 

The symmetry transformations that result from the group generators�—the first two terms 

of the expansion above with i taken to be very small�—are the infinitesimal part of what 

is known as a Lie group.  It can be shown that the generators obey the commutation 

relations 

Xi, Xj = iCij
l Xl, 
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where the Cij
l  are a set of real constants called the structure constants, which depend on 

the particular group.  Such sets of commutation relations comprise a Lie algebra.  Note 

that the anti-symmetry of the commutator implies that the  Cij
l  are also antisymmeteric in 

the lower indices i and j.    

 

We will now need to find the form of the derivative Dµ for non-Abelian groups (where 

matrices of the representation do not commute). 

 

Arbitrary gauge group local symmetry transformations 
and corresponding gauge covariant derivatives 
Thus far we have the following ingredients for a gauge theory: A Lie group G(x) having 

an independent copy assigned to each point x of Minkowski space.  In the mathematical 

literature, this type of structure is known as a fiber bundle.  The relationship between the 

group assigned to each space-time point and the generators of the group, Xi, is 

G x = e ie i x Xi.  
The space-time dependence is carried by the parameters i(x).  As the particle moves 

through a potential field, the group G(x) tells us how a set of basis vectors in the �“internal 

space�” associated with the particle changes.  This internal space corresponds to internal 

degrees of freedom associated with the particle such as isotopic spin. 

 

The wave function of the particle can then be written as 

x = i x u
i,  

where the sum is over the set of internal space basis vectors ui.  The index i identifies 

components of an internal space quantity such as isotopic spin; i (x) should be thought 

of as a component of  (x) in the basis ui.  For an infinitesimal displacement in space-

time, 

G dx = e iqd iXi,  
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where d i = µ
i x dxµ .  q is the electric charge e for electromagnetic gauge group 

U(1) or the coupling constant for an arbitrary gauge group.  As the particle moves from x 

to x +dx, the wave function changes by 

d x = µ i x dxµui + i x du
i.  

It is the second term on the right hand side of this equation that describes the change in 

the basis vectors; the first is the change in x  in moving from x to x +dx.  Now the 

generators Xi are matrices that act on the column vectors ui of the basis.  This means that 

G(dx)ui can be written as 

G dx ui = e iq µ
k x dxµ Xk ij u j.  

Remembering from the commutator discussion above that the matrices representing the 

group generators must be antisymmetric, this can be expanded to first order in dx as 

ui + dui = j
i iq µ

k x dxµ Xk ij u
j.  

For i = j, when the group generator matrix vanishes, j
i
 becomes the identity matrix and it 

is the only remaining term, vanishing otherwise.  The second term within the brackets 

corresponds to dui and allows the introduction of the generalized vector potential, 

Aµ ij = µ
k x Xk ij.  

The change in the wave function then becomes 

d x = µ x ij iq Aµ ij x dxµu j.  

ij  has been introduced so as to allow the ui that appears in the first term within the 

brackets to be factored out.  Inspection of this equation tells us that, if we introduce 

the gauge covariant derivative 

Dµ j x = ij µ iq Aµ ij x ,  

it can be written as 

d x = Dµ j x dxµu j.  

The last few equations have been written out in great detail.  They can be simplified 

considerably if the explicit matrix indices are suppressed so that we would have instead 

the relations as they are usually found in the literature: 
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Aµ = Aµ

kXk,

d x = µ x iqAµ x dxµ = Dµ x dxµ,

Dµ = µ iqAµ.

 

Standard Model Beginnings 
The Standard Model brings together three of the fundamental forces of nature.  It is a 

gauge theory of strong and electroweak interactions. This means that at each point of 

space-time there is an internal space attached.  From the mathematical point of view, the 

structure is that of a fiber bundle with a Minkowski base space and a principal bundle 

consisting of the gauge group.  Individually, the groups involved are SU(3) for the strong 

force, SU(2) for the weak force and U(1) for the electromagnetic force.  The symmetries 

involved with these groups are internal symmetries of the internal space, the others being 

space-time symmetries of the kind discussed above.  These groups are usually written 

with subscripts C, L, Y, and EM respectively, standing for color, left, hypercharge, and 

electromagnetic.  The restriction L reflects the fact that nature does not seem to have right 

handed neutrino components.   

When these groups are put together to represent the Standard Model, an element g 

contained in the combination can be written 

g SU 3 C × SU 2 L × U 1 Y,  

where SU 2 L × U 1 Y  is the Glashow-Weinberg-Salam electroweak symmetry group 

and U(1)Y is the phase group of weak hypercharge.  This symmetry can be 

�“spontaneously�” broken (to be discussed later) to U(1), the phase group of the usual 

electric charge.  The symbol × means the direct product so that if 

g SU 3 C × SU 2 L × U 1 Y , one may represent g as a 6 × 6 block diagonal matrix 

having the form 

g =
g1 0 0
0 g2 0
0 0 g3

, g1 SU 3 C, g2 SU 2 L, g3 U 1 Y.  

g1, g2, and g3 are elements contained in the simple groups SU(3)C, SU(2)L, and U(1)Y, 

which have no non-trivial normal subgroups. 
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Some language: The local weak isospin symmetry SU(2)L governs the weak interactions 

between quarks and leptons, while SU(3)C governs the strong color interactions between 

quarks.  Being spin ½ particles, quarks obey a form of the Dirac equation.  Weak isospin 

should not be confused with the isotopic spin (or isospin) used by Heisenberg to describe 

the symmetry between the neutron and the proton, which would transform into one 

another under the spin ½ representation of SU(2).  There is, however, a close relation 

between Heisenberg�’s isospin and weak isospin in that a nucleon�’s isospin is the sum of 

the weak isospins of its constituent three quarks. 

Isospin 
If strong hadronic forces are charge independent, an isospin vector, I, can point in any 

direction in isotopic space.  In the case of the neutron and proton, which are by definition 

distinguished by I3, the charge operator Q corresponding to the electric charge q is  

Q = e(I3 + ½).  Since the nucleons have spin ½, they have 2I + 1 = 2 possible orientations 

in isotopic space, so that I3 has the value of ½ or ½, and e(I3 + ½) has the value 0 or e. 

 

In the Standard Model, members of the particle zoo are grouped into isospin multiplets 

where each member of the multiplet is identified with different orientation in isospin 

space in the same way as was done for the proton and neutron.  Charged current 

experiments show that the leptons and associated neutrinos must be represented as left-

handed �“doublets�” of isotopic spin so that for three generations one has 

e
e L

, µ

µ
L

,
L
.  

The -meson, which has I = 1 so that there are 2I + 1 = 3 members of the isospin 

multiplet, is consequently a triplet, corresponding to 

I 3 =
+1 +

0 0

1
.  

Here, the relationship between the charge and I3 is q = e I3.  Gell-Mann and Nishijima 

generalized this relation to include the strange particles by assuming that the charge of 
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other particles are related to I3 by a linear relation of the form q = a I3 + b.  The constant 

a is determined from q = e I3 for pions as a = e.  b can be found as follows: I3 has the 

range �–I to +I, giving the average charge of the multiplet as <q> = b.  Only particles with 

zero hypercharge have <q> = 0; otherwise, <q> = (½)eY , where Y is the hypercharge.�†  

The generalization is then q = e (I3 + Y/2).  Expanded to include other quantum numbers 

(originally only baryon number and strangeness) in addition to hypercharge, this is 

known as the Gell-Mann Nishijima relation.  In terms of operators, the weak hypercharge 

Y is defined by 

Q = T 3 + Y2 ,
 

T 
3 being an element of the SU(2)L Lie algebra defined above, and Q being the charge 

operator that generates U(1)em.   

First, consider SU 2 L × U 1 Y , the groups associated with electroweak unification; the 

group SU(3)C will be discussed when the fundamental particles of the Standard Model 

are introduced.   

 

The electro-weak group SU 2 L × U 1 Y  
The charge operator Q is associated with U(1)em, and similarly, the hypercharge operator 

Y is associated with U(1)Y.  As indicated by the names, weak isospin and weak 

hypercharge come from the Gell-Mann and Nishijima approach to forming SU(2) 

hadronic isospin multiplets. 

 

Some terminology: Taken together, mesons and baryons are known as hadrons.  While 

mesons are made up of quark-antiquark pairs, baryons are composed of three quarks. 

Mesons have baryon number zero, which is why they are composed of a quark and 

                                                
�† Hypercharge is defined as Y = B + S, where B is the baryon number and S is the 
strangeness.  Later in this essay it will be seen that baryons are composed of three quarks, 
u, d, and s, so that the baryon number of quarks is 1/3 (antiquarks, 1/3).  Strangeness 
counts the number of strange quarks or antiquarks comprising the states that make up a 
particle�’s wavefunction; e.g., the wavefunction for the K0 meson, ds , has a 
strangeness of +1, while that for the K , su , has strangeness 1. 
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antiquark pair having baryon number 1/3 and 1/3 respectively.  Protons and neutrons, 

known as nucleons, have an attracting force acting between them that is due to residual 

color interactions.  Only about one percent of the rest mass of these nucleons is due to 

their constituent quark masses�—the rest is due to quark gluon interactions.  The meaning 

of this will become clear in what follows. 

 

The idea of using the groups SU 2 L × U 1 Y  was introduced by Glashow in 1961 and 

predated the discovery of weak neutral currents.  Experiments indicate that in addition to 

the photon field Aµ , the weak interactions require three intermediate vector bosons 

mediating processes such as the scattering of µ by e  and beta decay.  Glashow�’s work 

was extended by Weinberg in 1967 and Salam in 1968 to include the required bosons, the 

W±, defined below, and the Z0.  These gauge particles are massless and are given masses 

by means of the introduction of a scalar field called the Higgs field, which results in the 

spontaneous symmetry breaking that, except for the photon and neutrino, give the 

particles mass.  

 

In order to achieve the unification under the Glashow-Weinberg-Salam model of the 

weak and electromagnetic forces a new weak neutral current interaction mediated by the 

Z0 was introduced for reasons having to do with gauge invariance requirements related to 

the interaction between the W+ with the W  and the fact that the generators of the W+ and 

W  do not commute.  The existence of the weak neutral current means that there is a 

weak force between electrons in addition to the Coulomb force so that Coulomb�’s law 

must be modified.  

 

Including the new weak force in addition to the Coulomb force means that the usual 

vector potential Aµ of the U(1) group must be modified to be a linear combination of the 

U(1) gauge field and the new Wµ

3
 field of SU(2).  The Standard Model uses the resulting 

isotriplet of vector fields Wµ

i  coupled with strength g to the weak isospin current Jµ
i , 
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along with a vector field Bµ coupled to the weak hypercharge current jµ
Y

 with strength 

conventionally taken to be g /2.   

 

There are two observed currents, the electromagnetic current jµ
em and the neutral current 

Jµ
NC.  These will be expressed in terms of the two neutral currents Jµ

3  and jµ
Y  belonging 

respectively to the symmetry groups SU(2)L and U(1)Y.  The following will indicate how 

this is done. 

 

We now assume that both charged and neutral currents exist, that the charged currents 

only couple between left-handed leptons, and that the bosons mediating the weak 

interaction are the W± and Z0, which are massless at this point.  

 

Several fields will be introduced in what follows: T = T 1, T 2, T 3
 are the generators of 

SU(2)L, Y the generator of U(1)Y, and these generators obey the commutation relations 

T i, T j = i ijkT
k, T i, Y = 0. 

Wµ

i , with i = 1, 2, 3 is an isospin triplet�—meaning it is an isospin vector and a 4-vector in 

space-time, which couples to the weak isospin current Jµ
i
, while Bµ is an isospin 

singlet�—meaning it is an isoscalar and a 4-vector in space-time that couples to the weak 

hypercharge current jµ
Y .  These fields will be used to form the physical particles Z0, W+ 

and W , the last two being defined as 

W + = 1
2 Wµ

1 iWµ
2 , W = 1

2 Wµ
1 + iWµ

2 .  

 The W+ and W  fields are charged bosons, while  Wµ

3  and Bµ are neutral fields. 

 

The leptons are left-handed doublets with isospin set equal to ½ and T 
3 = ± ½ and right-

handed singlets having zero isospin: 
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l

l L

= 1 5

2
l

l
, l = e, µ,

l R =
1 + 5

2 l,
 

where, for example,  e corresponds to the electron neutrino wavefunction.  

The Pauli matrices, 

1 = 0 1
1 0 , 2 = 0 i

i 0 , 3 = 1 0
0 1 ,  

may be used to define the step up and step down operators 

+ =
0 1
0 0 , = 0 0

1 0 ,  

which are used to raise and lower the isotopic spin.   

 

Using doublet l

l L

 introduced above, one may introduce an isospin triplet of weak 

currents, 

Jµ
i x = 12

l

l L
µ i

l

l L

, i = 1, 2, 3.  

The corresponding charges, 

T i = J0
i x d 3x,  

generate an SU(2)L Lie algebra, 

T i, T j = i ijkT
k.  

The weak current Jµ
3 x  introduced above cannot be identified with the experimentally 

observed weak neutral current Jµ
NC

 because the latter has a right-handed component.  The 

electromagnetic current is a neutral current with both left and right handed components, 

and is given by, 

e jµ
em = e µQ ,  

where Q is the charge operator having eigenvalue 1 for the electron.  The left-handed 

component belongs to an isotriplet and will be associated with T3 and Wµ

3  below, while 

the right-handed component is an isosinglet current that has both right and left-handed 
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components.  Neither  jµ
em

 or Jµ
NC

 obey SU(2)L symmetry.  The idea now is to form two 

orthogonal combinations of Jµ
3 x  and the weak isospin singlet jµ

Y
, that have appropriate 

transformation properties under SU(2)L.  jµ
Y

 is the weak hypercharge current given by  

jµ
Y = µY ,  

which is unaffected by SU(2)L transformations. 

 

The isospin doublet and singlet introduced above are now required to be invariant under 

the local gauge transformations so that 

l

l L

l

l L

= e i x T l

l
= e i x

22 l

l
,

l R l R = e
i x Y

l R.
 

Note that Ti = i/2 and that the operator Y, which generates the U(1) group, is simply a 

constant Y.  This gauge invariance will only hold if the Lagrange density of the Dirac 

equation is also invariant under this transformation. Now the leptons at this point are 

massless and will only become massive under spontaneous symmetry breaking.  As a 

result the Dirac Lagrange density is obtained from the usual density by setting the mass 

equal to zero.  Using the left and right-handed split of the wave function above, the 

resulting Lagrange density, 

L = i l

l L

µ
µ

l

l L

+ i l R
µ

µ l R,  

will only be gauge invariant if the derivative µ is replaced by 

Dµ = µ igT Wµ ig2 YBµ.  

The photon field constructed from the two neutral fields must be combined so that the 

physical state given by Aµ is massless, and will have the form 

Aµ = Bµcos w + Wµ

3sin w,  
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and the combination orthogonal�† to Aµ is the combination corresponding to the neutral 

intermediate boson of the weak interactions 

Zµ = Bµsin w + Wµ

3cos w.  

The last two equations may be inverted to give 

Bµ = Aµcos w Zµsin w

Wµ

3 = Aµsin w + Zµcos w.
 

The mixing angle W is known as the Weinberg angle.  Note that Zµ is often written as 

Zµ

0 , Z0, or W0 in the literature. 

 

The electroweak neutral current interaction, as indicated above, can be written as  

igJµ
3Wµ

3 ig2 jµ
YBµ.  

With a little algebra this can be put into the form 

igJµ
3Wµ

3 ig2 jµ
YBµ = i gJµ

3sin w + g
jµ
Y

2 cos w Aµ i gJµ
3cos w g

jµ
Y

2 cos w Zµ.  

The first bracketed term on the right hand side is the electromagnetic interaction.  From 

the definitions of jµ
em, jµ

Y , Jµ
3 , and Q above, one finds the important relation 

e jµ
em = e Jµ

3 + 12 jµ
Y .  

This must be the same as the first term bracket, so that both gsin w  and g cos w  equal e, 

or tan w =
g
g .  This tells us that the couplings g and g' may be replaced with e and W, 

where W is determined by experiment. 

 

Again, with a little algebra, the weak neutral current of the second bracket may be written 

as 

                                                
�† Draw a set of x,y-axes in the plane; label the x-axis Zµ and the y-axis Aµ; draw the 
vector Wµ

3  in the first quadrant at an angle  with respect to the Zµ-axis and vector Bµ 

orthogonal to  in the 2nd-quadrant. The expressions for Aµ and Zµ follow from projecting   

Wµ

3

 and Bµ on the Zµ and Aµ axes. 
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i g
cos

Jµ
3 jµ

emsin2 Zµ.  

The expression in the brackets is defined as the observed weak neutral current Jµ
NC.  Thus, 

it is possible to write the observed neutral current Jµ
NC as a sum of a left-handed 

component Jµ
3  of SU(2)L and a right-handed component taken from the electromagnetic 

current jµ
em.  The electromagnetic current jµ

em in turn may be written as the sum of  Jµ
3  

contained in SU(2)L and the weak hypercharge current jµ
Y , which is invariant under 

SU(2)L and has only a right-handed component.  The net result is then 

jµ
em = Jµ

3 + 12 jµ
Y

Jµ
NC = Jµ

3 jµ
emsin2 .

 

Consider now the electron and its neutrino so that the wave functions are 

L = e
e L

with T = 12 and Y = 1

R = eR with T = 0 and Y = 2.
 

The electroweak Lagrangian may then be written as 

L 1 = L
µ i µ

1
2g �•�•Wµ + 12g Bµ L + eR

µ i µ + g Bµ eR 1
4Wµ �•�•Wµ 1

4Bµ B
µ .  

where the last two terms correspond to the kinetic energy and self coupling of the fields.  

This Lagrangian describes massless gauge bosons and fermions.  Gauge invariant masses 

are introduced by use of spontaneous symmetry breaking.    

 

Spontaneous Symmetry Breaking 

Spontaneous symmetry breaking is in essence a consequence of redefining the concept 

and nature of the vacuum.  The Standard Model introduces a vacuum significantly 

different from that of standard quantum field theory.  There, the vacuum state, 0, is the 

quantum state where no particles are present.  It is invariant under a unitary 

transformation so that U 0 = 0.  It was soon recognized, however, that there was a 

problem with the quantum theory of fields.  An operator, such as the electric field E, is 

not well defined, whereas �“smeared�” fields such as 

E x, t f x dxdt = E f , 
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where f is a smooth infinitely differentiable function, are well defined.  One possible way 

of interpreting this difficulty is that it is due to the nature of the vacuum, which will be 

further discussed later in this essay.  The implication is that the quantum field theoretic 

view of the vacuum must be modified at small distances.  This is precisely what lies at 

the heart of symmetry breaking.  By redefining the vacuum local gauge symmetries may 

be �“broken�” resulting in gauge bosons gaining mass through the Higgs mechanism.   

 

With some reasonable assumptions on the transformation properties of the Lagrangian, 

the Noether theorem tells us that if the Lagrangian has some number of symmetries there 

will be the same number of conserved currents and consequently, because of the equation 

of continuity, the same number of conserved charges.  This fact is the basis for proving 

an important theorem by Goldstone, which has both a classical and quantum mechanical 

formulation.  The latter can be expressed as follows:  If there exists a field operator (x) 

such that the vacuum expectation value  <0| (x) |0>  0, and which does not transform as 

a singlet (a 1-dimensional representation or a spin-zero state) under some transformation 

group, then there exist massless particles in the spectrum of states.   

 

The vacuum state, 0, will no longer be defined as the quantum state where no particles 

are present.  Rather, it is assumed to be analogous to the ground state of an interacting 

many body system, and will be defined as the state of minimum energy so that the 

vacuum expectation value of the Hamiltonian <0|H|0> is a minimum.  It is the minimum 

of the potential energy that will play the major role in what follows.  Furthermore, in 

quantum mechanics the ground state is non-degenerate.  In the case of quantum field 

theory, this will no longer be the case.  Degenerate orthogonal ground states, where 

tunneling between them is not possible, will be allowed. 

 

If the Lagrangian is invariant under a gauge group G and after symmetry breaking the 

vacuum remains invariant under H  G, that is, a subgroup of G, the number of massless 

Goldstone bosons is equal to the number of symmetries that are broken.  Equivalently, 

this is equal to the dimension of the coset space dim(G/H) or the number of generators of 

G that are not generators of H.  The magic of symmetry breaking in the Standard Model 
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is that when the symmetry is local, so that the gauge transformations depend on space-

time, no Goldstone bosons appear, and instead the symmetry breaking results in massive 

gauge bosons whose number is equal to dim(G/H).  The total number of gauge particles, 

both massive and massless, is given by dimG. 

 

While the Lagrangian of a system may be invariant under some symmetry group, the 

vacuum state may not be invariant.  The classical example of this is the ferromagnet.  

Above the critical Curie temperature, the spins are randomly oriented and the ground 

state is spherically symmetric.  Below the Curie temperature, the spins for each magnetic 

domain are aligned and the ground state is no longer spherically symmetric with regard to 

rotations.  The rotational symmetry of the Hamiltonian is �“spontaneously broken�” to the 

cylindrical symmetry of each magnetic domain along the direction of its magnetization.  

The directions are random and have the same energy in the absence of an external 

magnetic field.  The vacuum or ground state is degenerate and does not share the 

symmetry of the Hamiltonian. 

 

An analogy often used in the literature is that of a superconductor, and in the case of 

quantum chromodynamics one speaks of �“color superconductivity�”.  For the usual 

superconductor, one can show that combining the London equation for the current with 

Maxwell�’s equations leads to a relation for the magnetic field penetration into the surface 

of a  superconductor whose solution is a decreasing exponential.  This is known as the 

Meissner effect.  Its importance for spontaneous symmetry breaking is that it transforms 

the long-range electromagnetic field into one that, in the superconductor, has short range 

without violating the gauge invariance of Maxwell�’s equations.  In addition, we know 

that Yukawa showed that short-range forces correspond to massive quanta.  The 

superconductor is said to give the massless photon a �“mass�” within the superconductor.  

In this way, superconductivity can be used as an example of spontaneous symmetry 

breaking in the Abelian Higgs model. 

 

The semi-classical approach here to explaining spontaneously broken symmetries will be 

to start with the Lagrangian for the field, put in a special form for the potential that 
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redefines the vacuum, and impose symmetry requirements.  Recall that if one puts the 

Lagrange density (often simply called the Lagrangian) into the Euler-Lagrange equation, 

one obtains the equation of motion.  So, for example, substituting the Lagrange density 

L = 12 µ

µ 1
2m

2 2  into the Euler-Lagrange equation results in the Klein-Gordon 

equation µ

µ
+ m2 = 0 . 

 

Let us begin with global symmetry breaking, which means that gauge transformations are 

not space-time dependent.  The simplest example is that of U(1).  The general Lagrange 

density for a complex scalar field = 1 + i 2  is  

L = µ

µ V .  

For the potential V, one chooses a form originally proposed by Ginzburg and Landau 

before the BCS theory of superconductivity.  This type of potential was intended to 

represent the Helmholtz free energy of a second order phase transition. The reason for 

choosing it here is that this form of potential works to give the desired result (and 

possibly tells us something about the nature of the vacuum) even though it was intended 

as a phenomenological description of the free energy density of a superconductor.  In 

gauge theory it provides a type of self-interaction of the Higgs field.  As already noted, it 

also drastically redefines the nature of the vacuum. It is given by 

V , = µ2 +
2

.  

The self-interaction comes from the  term.  The extrema of this function are found by 

taking the first and second derivative with respect to | | and setting the result equal to 

zero. Doing the algebra (and using the definition of ) results in 

µ2

2
= = 1

2
+ 2

2 =: a2.  

a2 is real for the choice   > 0, µ2 < 0, which we make here.  There is also the solution  

 =  = 0.  Examining the second derivative tells us that this solution is a relative 

maximum and that the solution at a2 = µ2/2  is a relative minimum. A sketch of the 

potential is shown below 
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Although the components of  are drawn as coordinates, it should be remembered that  

is a field.  The minima of the potential lie along the circle of minimal potential of radius a 

that comprise a set of degenerate vacua related by a rotation about the axis corresponding 

to the magnitude of the potential.  The potential along the circle, in the  direction tangent 

to the circle, is constant.   It therefore takes no energy to move along this path and motion 

along it corresponds to the massless mode, while motion in a plane containing the V-axis 

does take energy and corresponds to the massive mode. 

 

Let us now transform to polar coordinates so that 

x = x ei x ,  

where x is the space-time coordinate so that the same form holds at each space time point.  

The vacuum is then <0|  |0> = <0|  |0> = a and <0|  |0> = 0.  The degenerate vacua are 

then connected by a U(1) symmetry transformation.  Note that the U(1) phase symmetry 

is destroyed as a result of the vacuum being given by the choice of  = a and some 

particular value of  ;  it is the specification of  that breaks the symmetry.  We will be 

interested in small oscillations around the vacuum state located at the circle of minimal 

potential.  The quanta of these oscillations correspond to physically interesting particles.  

Because the minimum of the potential lies at a radial distance a from the origin, the 

following transformation is made: 
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x = x + a ei x .  

As a result the vacuum is now <0| ´ |0> = <0|  |0> = 0.  This  is then substituted into the 

Lagrangian given above there results, after a bit of algebra, a kinetic term and the 

potential term 

V =
4

+ 4a
3

+ 4a2
2

a4 .  

The quadratic term in ´ implies that ´ has a mass of 4 a2.  Spontaneous symmetry 

breaking has generated this mass.  Notice that there is no similar term in  2, implying 

that  is a massless field.  This can be thought of as being a consequence of there being 

no restoring force in the -direction.  1 and 2 started out as two fields satisfying the 

Klein-Gordon equation.  After symmetry breaking we have a massive field ´ and a 

massless field .  This is an example of the group theoretic requirements set out above.  

Another example or two might be helpful. 

 

Let the symmetry group be SO(3).  A Lagrangian for a Lorentz invariant, massive 

isovector scalar field is 

L = 12 µ i
µ

i
µ2

2 i i i i
2
,  

where i = 1,2,3.  After symmetry breaking, we get a degenerate isospin vacuum state, and 

must choose one.  Once this dirction in isospace is chosen the vacuum is no longer 

invariant under the three generators of SO(3) but only under rotations about the fixed axis 

in isospace.  We started out with three massive fields and after symmetry breaking have 

only one, corresponding to the fixed axis in isospace. Two Goldstone bosons appear 

corresponding to the loss of symmetry about the two other axes.  Thus, three massive 

scalar fields result in one massive scalar field and two massless scalar fields. 

 

If we demand that the Lagrangian above be invariant under a local rather than global 

gauge transformation so that ei x
, the derivative must be changed to the covariant 

derivative thereby introducing additional terms into the Lagrangian.  This results in the 

Lagrangian taking the form 
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L = 12 Dµ i D
µ

i
µ2

2 i i i i
2 1

4Fµ
i F iµ ,  

where 

Dµ i = µ i + g ijkAµ

j
k, Fµ

i = µA
i Aµ

i + g ijkAµ

j Ak .  

Here we are starting with three massive scalar fields i and three massless vector fields 

Ai
.  After symmetry breaking, there is again a degenerate vacuum state and after 

choosing a direction in isospace, say 3, there remains only one massive scalar field 3.  

But instead of two Goldstone bosons, we find that two of the vector fields A
i
 have 

become massive and one remains massless.  The vacuum remains invariant only under 

U(1), the group with one generator, corresponding to the one massless vector field. 

 

The Weinberg-Salam Model and Gauge Field Masses 

The introduction of the symmetry breaking Higgs field in the Weinberg-Salam 

electroweak theory, is perhaps its most important feature.  Mass is generated for gauge 

bosons by their interaction with the Higgs field.  This mechanism is also used to produce 

quark masses in QCD and thus redefines the nature of the vacuum down to very small 

distances. The Higgs field has a totally unknown origin and is simply postulated by 

analogy to examples such as those discussed above.   

 

The electroweak Lagrangian was given above as 

L 1 = L
µ i µ

1
2g �•�•Wµ + 12g Bµ L + eR

µ i µ + g Bµ eR 1
4Wµ �•�•Wµ 1

4Bµ B
µ .  

The aim now is to use the Higgs formalism to give the W± and Z0 mass while leaving the 

photon massless.  If a scalar field is to be used for spontaneous symmetry breaking an 

appropriate Lagrangian, having SU 2 × U 1  gauge invariance, for the scalar field must 

be added to the above Lagrangian for the scalar field.  It will look very similar in form to 

the above except that the kinetic energy terms will be eliminated.  The scalar Lagrangian 

is 

L 2 = µ + ig �•�•Wµ + i12g Bµ

†

µ + ig �•�•Wµ + i12g Bµ µ2
† † 2

.  
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Here,  represents four real scalar fields i that�—following Weinberg�—are used to form 

an isospin doublet with weak hypercharge Y = 1; that is,   

=
+

0 ,
+: = 1

2 1 + i 2

0: = 1
2 3 + i 4

.  

The potential with µ2 < 0 and  > 0 will cause spontaneous symmetry breaking, as 

discussed above, leaving a local SU(2) gauge freedom that can transform 1, 2, and 4 

away so that 

= 0
3 + a

.  

The vacuum expectation value, 0, is then 

0 = 0 0 = 1
2

0
a .  

This is known as the Higgs vacuum or ground state and is assumed ab initio to be 

electrically neutral to guarantee that the photon remains massless.  It does however carry 

weak hypercharge and isotopic spin in order to interact with the Z0, W+ and W  fields.  It 

should also be noted that when these fields are massless, they only have spin components 

parallel and antiparallel to the momentum, but after symmetry breaking they gain an 

additional transverse spin component. 

Remembering the Gell-Mann-Nishijima relation,  

Q = T 3 + Y2 ,
 

we see that with the choice of T = | T | =1/2, T3 = 1/2, and Y = 1 the charge operator Q 

that generates U(1)em will yield zero when operating on 0.  This means that the vacuum 

will remain invariant under U(1)em local gauge transformations since for any value of 

(x),  

0 0 = ei x Q
0 = 0.  

Because this is the case, the photon remains massless.   

 

The gauge boson masses are obtained by substituting 0 into the Lagrangian L2 above. 

The relevant term in L2 with Y = 1 is  
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ig �•�•Wµ + i12g Bµ

†

ig �•�•Wµ + i12g Bµ .  

Putting in the matrices and remembering that Ti = i/2, where the i are the Pauli matrices, 

results in 

i
2

gWµ

3 + g Bµ g Wµ

1 iWµ

2

g Wµ

1 + iWµ

2 gWµ

3 + g Bµ

0

†

gWµ

3 + g Bµ g Wµ

1 iWµ

2

g Wµ

1 + iWµ

2 gWµ

3 + g Bµ

0 .  

Going through the matrix algebra yields 

1
8a

2g2 Wµ

1 2
+ Wµ

2 2
+ 18a

2 g Bµ gWµ

3
2

.  

The first term can be written as 

1
2ag

2

Wµ

+W µ.  

Since we are working in Minkowski space, the µ index can be raised or lowered as 

needed to improve clarity.  Remembering the Lagrange density, for the Klein-Gordon 

equation, L = 12 µ

µ 1
2m

2 2
, and comparing the mass term with the above, tells 

us that MW
2 = 12ag

2

, so that MW = 12ag.   

 

The second term, 18a
2 g Bµ gWµ

3
2

, is transformed by use of the relations  

Bµ = Aµcos W Zµsin W

Wµ

3 = Aµsin W + Zµcos W,
 

described earlier in this essay, into 

1
8a

2 Aµ g cos W gsin W Zµ gcos W + g sin W

2

.  

If the photon is to remain massless, the term g cos W gsin W  must vanish.  This will 

be the case, and the requirement that sin
2

W + cos
2

W = 1  will be satisfied, if  

sin W =
g

g2 + g 2 and cos W =
g

g2 + g 2
.  
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Substituting these into the remaining term gives 

1
8a

2Zµ
2 gcos W + g sin W

2

= 12a
2
g2 + g 2

4 Zµ
2 = 12MZ

2Zµ
2.  

The mass of the neutral Zµ is then 

MZ = a
g2 + g 2

1
2

2 .  

A neutral vector boson has the same form of mass term as that in the Lagrangian of the 

Klein-Gordon equation, which can be generalized to several fields having a vector or 

spinor character. 

 

What has happened here is that the electroweak symmetry group has been dynamically 

broken to yield the electromagnetic group, that is SU 2 L × U 1 Y
SB

U 1 EM , while 

keeping the photon massless, along with generating mass for the W and Z bosons. 

 

Thus far we have found the masses of the bosons but not the fermions.  The problem is 

that the mass term in the free field Dirac equation destroys gauge invariance under all 

gauge transformations and in particular under SU(2)L.  As a result it was excluded in the 

Lagrangian L1 above, which was for massless fermions and gauge bosons.  In somewhat 

simplified notation, the electron mass term would be me eLeR + eReL .  Because eR is a 

singlet and eL a member of an isospin doublet, this term cannot be gauge invariant. 

 

The way around this problem is to introduce a coupling between the originally massless 

fermion fields and the Higgs field.  The procedure for giving mass to the lepton and 

quark fermions is the same as above although there will be no way to predict the strength 

of the coupling, which becomes a parameter that must be fixed by the observed masses. 

 

With a slight change in notation from that given above, we defined the wavefunctions 

L = e
e

L

, R = eR. 
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Remembering that the Higgs field is 

=
+

0 ,  

and that the complex conjugate of + is , the following Lagrangian must be added to L1  

given above: 

L 3 = Ge e, e L

+

0
eR + eR , 0

e
e

L

.  

One again goes through the process of symmetry breaking using the potential discussed 

above and substitutes 

= 1
2

0
a + h x

.  

The Higgs doublet has been reduced to the neutral field h(x) and after again using the 

gauge freedom to transform 1, 2, and 4 away, the Lagrangian L3 becomes 

L 3 =
Ge

2 a eLeR + eReL
Ge

2 eLeR + eReL h.  

The electron mass is then given by choosing Ge such that me =
Ge

2 a.  

 

Masses for the quarks that appear in the QCD discussion below are obtained in the same 

way except that there are some changes in the choice of the Higgs doublet to generate the 

mass for the upper member of a quark doublet.  The masses associated with the up and 

down quarks, which make up protons and neutrons are quite small and to a good 

approximation can be set equal to zero.  Most of the mass of the proton and neutron come 

from the relativistic motion of their constituent quarks and the energy in the color gluon 

fields that govern their interaction.   
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Particles of the Standard Model & QCD 
Let us now list the fundamental particles of the Standard Model: 

 Gauge group: SU 3 C × SU 2 L × U 1 Y   8 + 3 +1 Gauge bosons. 

 The 12 gauge bosons are the W± , Z0 , the photon , and 8 gluons all 

having spin equal to 1. Three generations of Quarks and Leptons: 

u    d   e     e 

c    s   µ     µ 

t    b         

In addition, the quarks and gluons carry three conserved color charges 

 (r, b, g), and antiquarks carry anticolor r, b, g .  The u, c, and t quarks 

carry a charge in terms of e of +2/3, while the d, s, and b quarks have a 

charge of 1/3. 

And finally, one must introduce the spin-zero Higgs boson for the Higgs 

field needed to generate masses.   

Excluding the Higgs, this is summarized in the following table: 
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Both left-handed and right-handed quarks form triplets under SU(3)C, while left-handed 

quarks are doublets under SU(2) and right-handed quarks are singlets under SU(2).  

Leptons do not participate in strong interactions and are therefore color singlets under 

SU(3)C. 

 

The six leptons of the Standard Model, e, e, µ, µ, ,  , interact through 

electromagnetic and weak forces.  The gauge bosons W± and Z0 associated with 

SU 2 L × U 1 Y  are massless, but the weak interactions are known to have a short range, 

and the form of the Yukawa potential, e m/r/r, tells us that these must be massive. On the 

other hand, it can be shown that they must be massless to preserve gauge invariance.  As 

we have seen, this conundrum is resolved in the Standard Model by spontaneous 

symmetry breaking with the Higgs field. This results in the W± and the Z0 gauge bosons 

acquiring mass, the photon remaining massless, and most importantly, results in a theory 

that is renormalizable. 

 

All strongly interacting particles are composed of three quarks, while the mesons are a 

bound state of a quark and antiquark.  But then there is a problem since quarks obey 

Fermi-Dirac statistics so that the Pauli principle forbids the existence of states with three 

identical quarks.  The ++ is such a state, and to resolve the contradiction the new 

quantum number of color was introduced. 

 

The use of the term color charge can be a bit misleading.  Charge in electromagnetism is a 

scalar quantity.  In QCD, color charge is a quantum vector charge and the composite color 

charge of some configuration of quarks is similar to that of combining angular momentum 

in quantum mechanics.  The three color states form a basis in a 3-dimensional complex 

vector space.  The color state can be rotated by elements of SU(3).  The strong 

interactions in nature rule out states that are not color neutral�—all are color singlets. 
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Quarks interact via gluons, massless, spin one particles that can be either left or right 

handed, carry color charge, and can therefore interact with each other.  Quarks carry a 

color charge whereas antiquarks carry anticolor.  One rule is that there is color 

conservation at a quark-gluon interaction vertex, which tells us that gluons carry not only 

a color charge but also an anticolor charge.  The colors are often designated as red, blue, 

and green. 
 

An example of an interaction between two quarks is shown below where only the color 

exchange is indicated: 

 
 

The arrows along the gluon symbol indicate from which vertex the gluon originates, so 

that the rb symbol means that one starts from the left vertex and goes to the right one.  

The opposite is true for the symbol rb with the arrow below it.  As one can see, there is 

color conservation at each vertex.  Such diagrams for an individual vertex are often 

drawn as (but, as we will see, the other side of the diagram should not be forgotten): 

 
Let the three color states be represented in Dirac notation as |r>, |b>, |g>.  Then the vertex 

above (changing a red quark to a blue one) going from left to right can be represented as 

 

 

 

b 

b 
r 

r 

rb 

rb 

|r> 

|b> 
|G1> 
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The Lagrangian will have terms in it that depend on the SU(3) covariant derivative, the 

key term being i k
2 Gk , where Gk is the creation operator for a  Gk gluon, and the k are 

the Gell-Mann matrices  

1 =
0 1 0
1 0 0
0 0 0

, 2 =
0 i 0
i 0 0
0 0 0

, 3 =
1 0 0
0 1 0
0 0 0

,

4 =
0 0 1
0 0 0
1 0 0

, 5 =
0 0 i
0 0 0
i 0 0

, 6 =
0 0 0
0 0 1
0 1 0

,

7 =
0 0 0
0 0 i
0 i 0

, 8 = 1
3

1 0 0
0 1 0
0 0 2

.

 

These matrices are essentially the generators of the SU(3) group. 
 

If one thinks of r, b, g as creation operators that create the states |r>, |b>, |g> from the 

vacuum, then the vertex in the figure above has corresponding to it the expression 

<0 rG1b 0> , where the terms between the bra and ket vectors should be interpreted, 

from left to right, as �“annihilate an r quark�”, �“create a G1 gluon�”, and �“create a b quark�”.  

The missing vertex on the right hand side will give a similar term <0 bG1r 0> . 

Let the general color state vector in SU(3)C be represented as 
r
b
g

, with Hermitian 

conjugate r, b, g . Because of the k Gk term, the Lagrangian will contain terms of the 

form 

kGk = r, b, g kGk

r
b
g
.  

This allows us to find the form of the Gk gluons.  For example for k = 1,  

1G1 = r, b, g
0 1 0
1 0 0
0 0 0

G1

r
b
g
= bG1r + rG1b.  

Consider the first term on the right hand side operating on the vacuum so that we have 

<0 bG1r 0> .  Similar to the description given for the vacuum expectation value of the 

second term in the paragraph above, this means, from left to right, �“annihilate a b quark�”, 
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�“create a G1 gluon�”, and �“create a r quark�”.  The vacuum expectation value must be 

colorless so that <0 bG1r 0>  implies that G1~ br ; and <0 rG1b 0>  implies that G1~ rb .  

If G1 is to fulfill the requirement for both vertices it must then be composed of the terms 

rb and br. The combination is generally written G1 ~ 1
2 rb + br .  Going through the 

same procedure for the rest of the i results in 

G1 ~ 1
2 rb + br G2 ~ i

2 br rb G3 ~ 1
2 rr bb ,

G4 ~ 1
2 gr + rg G5 ~ i

2 gr rg G6 ~ 1
2 bg + gb ,

G7 ~ i
2 gb bg G8 ~ 1

6 rr + bb 2gg .

 

These gluon states are independent in the sense that they cannot be combined to yield one 

not in the list.  Notice that the three by three identity matrix does not appear in the list of 

i.  It would result in a long-range colorless singlet state 13 rr + bb + gg , which does 

not appear and is not observed in nature.  The Gk can also be computed by using  

Gk = r, b, g k

r
b
g
,  

or by defining the �“color matrix�” 

C = 1
2

rr rb rg
br bb bg
gr gb gg

,  

and using the expansion Gk = Tr k
*C .  There are eight gluons because gluons transform 

in the adjoint representation of SU(3), which is 8-dimensional.  Since gluons carry color 

charge, in principle they can bind together to form colorless states known as �“glueballs�”. 

 

Similar to the W± charged bosons in the electroweak case, one may define, for example, 
1
2 G1+ iG2 = rb , and similarly for the pairs G4, G5 and G6, G7.  As seen above in the 

diagrams, these represent the flow of color charge when quarks exchange gluons.  There 

are a set of Feynman rules for QCD that govern quark-quark scattering of various types. 
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The commuting generators in the i defined above are 3 and 8.  The fact that they 

commute tells us these generators are associated with two additional simultaneously 

observable quantum numbers.   
 

When hadrons are considered, these quantum numbers are defined as 

I3 = 12 3 and Y = 1
3 8  giving the weights I3 = +12,

1
2,0 and Y = 1

3,
1
3,

2
3 .  Now 

define the raising and lowering operators 

I± = 12 1 ± i 2 , U± = 12 6 ± i 7 , V± = 12 4 ± i 5 .  

Consider the operation of I+ on the blue color vector: 

1
2 1 + i 2

0
b
0
=
0 1 0
0 0 0
0 0 0

0
1
0
=
1
0
0
=

r
0
0
.  

The I+ operator thus converts blue to red.  Similarly, using the other raising and lowering 

operators and color vectors results in the scheme shown below. 

 

 

 
 

 

The SU(3)C wavefunctions for the combinations like rb are the exact analogues of the 

SU(3) wavefunctions for quark-antiquark combinations like dd.  With the identification 

r
b
g

u
d
s
,  

one can define color hypercharge and isospin for the three color and three anti-color states 

for quarks: 

YC I3
C

r 1  3 1  2
b 1  3 1  2
g 2  3 0

YC I3
C

r 1  3 1  2
b 1  3 1  2
g 2  3 0

 

U+g = b 
U b = g 

I+b = r 
I r = b 

V+g = r 
V r = g 

r 

g 

b 
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These color isospin and hypercharge charges should not be confused with flavor isospin 

and hypercharge for the quarks.  We now shift to a discussion of quarks. 

 

Because the quark masses compared to that of hadrons are very small, the flavor-

independent color force dominates their interactions.  Thus if we choose the quark basis 

as  

u =
1
0
0
, d =

0
1
0
, and s =

0
0
1
,  

we can, remembering the weights given for 3 and 8 above, make the following table 

(compare with the table for color just above): 

Q Y I3
u 2  3 1  3 1  2
d 1  3 1  3 1  2
s 1  3 2  3 0

Q Y I3
u 2  3 1  3 1  2
d 1  3 1  3 1  2
s 1  3 2  3 0

 

Q is again the electric charge.  Quarks have baryon number 1/3, while antiquarks have 

baryon number 1/3, so that mesons, composed of a quark and antiquark, have baryon 

number zero.  The way Q is determined is to make use of the same definitions given 

above in the discussion of color, I3 = 12 3 and Y = 1
3 8 .  In doing so we are using the 

two additional simultaneously observable quantum numbers also mentioned above.  Then, 

remembering the Gell-Mann-Nishijima relation,  

Q = I3 + Y2 ,
 

we see that Q is given by the matrix 

Q =

2
3 0 0

0 1
3 0

0 0 1
3

.  

 

Given the definition of the quark basis vectors above, we see that the u, d, and s quarks 

will have electric charges 2/3, -1/3, and -1/3 respectively. 
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The weight diagram will look similar to that for color above: 

 

 

 

 

 

 

 

The quarks are located at positions consistent with the table above.  In any given 

irreducible representation, the states corresponding to the various particles are 

characterized by the eigenvalues of I3 and Y.  The effect of the �“shift operators�” on these 

states follow from the commutation relations and can be summarized as: 

I± results in the changes Y = 0, I3 =  ±1, i.e., 

   I± I3,Y I3 ± 1,Y .  
U± results in the changes Y = ±1, I3 =  (±1/2), i.e., 

     
U± I3,Y I3 ± 1  2, Y ± 1 .

 
V± results in the changes Y = ±1, I3 =  ±1/2, i.e., 

     V± I3,Y I3 ±1  2, Y ± 1 .  

A simplified version of the diagram above is called the fundamental representation for 

quarks and is designated as 3, and the diagram for antiquarks, is designated as 3, as shown 

below.  Often, the axes and quark labels are also omitted, but are shown in this figure for 

clarity.   

 

 

 

 

 

Y 

U+s = d 
U d = s 

I+d = u 
I u = d 

V+s = u 
V u = s 

u 

s 

d 
I3 

I3 
u 

s 

d  
3 = 

Y 

u 

s 

d 
I3 3 = 

Y 
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The scale for Y and I3 in such diagrams is chosen so that the shift resulting from the 

application of the shift operator V+ is inclined by 60o.   
 

Now we come to a few aspects of what might be termed �“diagramatica�”.  To specify a 

representation or multiplet of SU(3) one must give the sites in the Y-I3 plane, as is done 

in the figures above, which are to be occupied, and with what multiplicity (how many 

states can occupy a given position).  This is known as a weight diagram.  Generally 

multiplets are triangular as above or have a hexagonal symmetry as shown below for the 

large multiplet 81. 

 

The circles in the figure designate the multiplicity for each site, which are the same on a 

give layer.  The rule is that every site on and inside a boundary are occupied by at least 

one state, and that when a triangular layer is reached the multiplicity on and inside the 

triangle have the same multiplicity.  Each pattern that satisfies this rule corresponds to 

only one irreducible representation of SU(3).  The fact that multiplicities greater than one 

occur means that another quantum number in addition to Y and I3 is needed to distinguish 

them.  The choice made is the total isotopic spin so that any state of an SU(3) irreducible 

representation is completely and uniquely characterized as I, I3,Y . 

 

Representation products 

Multiparticle states are obtained by taking the product of irreducible representations.  

There is a graphical method of obtaining products of representations best illustrated by an 



 

 43

example.  Consider the product 3 3.  Graphically, the product is interpreted as �“put 

the origin of  3 on each node of 3.  The result looks like the figure below. 

 

 

 

 

 

 

Comparison with the general multiplet figure above, shows that the weights on the 

boundary (formed by adding the dotted lines) have unit multiplicity, as they should.  The 

original 3 diagram in blue is now eliminated leaving the center with a multiplicity of three. 

According to the second part of the rule, for an irreducible representation it should be 

two, so this nonet must reduce to an octet and a singlet as shown in the figure on the 

right.   

 

The way the various quarks fit into this scheme can be seen by plotting the values for Y 

and I3 of the quarks and antiquarks given in the table above.  The figure above then 

becomes  

 

This example can be applied to the meson octet composed of quark-antiquark pairs, as 

shown below (s is the strangeness, and the I3 values running from left to right are 

 1, 1/2, 0, 1/2, and +1.   

3 3
 
=  I3 = 

Y Y 

I3              2 

        3 3
         =        8                                  1  
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Each of the mesons corresponds to a colorless quark-antiquark combination.  

 

We have seen above that the properties of SU(3) gave us the result that 3 3 = 1 88 .  

Similarly, if we want to combine three quarks to form baryons we would have 

3 3 3 = 1 88 88 1010 .  This can be seen in two steps: first 3 3 = 6 3 ; 

followed by 3 3 3 = 3 6 3 = 3 6 3 3 = 3 6 88 11 .   One can then 

show using the graphical techniques above that 3 6 = 88 11 , so the result stated 

follows.  It looks like: 

 

     1010                              88                               88                  11 

Note that the center of each figure is at Y = 0, I3 = 0 and I3 changes in steps of ½ from the 

origin so that the states indicated by the dots have I3 values ranging from 3/2 to 3/2. The 

decuplet figure on the left consists of an I = 3/2 quartet with Y = 1, a triplet with I = 1 

and Y = 0, an isospin doublet with Y= 1, and an isospin singlet (I = 0) with Y= 2. 

 



 

 45

Were SU(3) a perfect symmetry, the 27 particles associated with this product would have 

the same mass, but the symmetry is not perfect.  The symmetry is broken by the large 

mass of the strange quark compared to that of the up and down quarks. 

 

The completely antisymmetric singlet has a form that can be expressed as 
1
6 uds usd + sud sdu + dsu dus .  There is an analogous color singlet with the 

form 16 rgb grb + gbr bgr + brg rbg .  This color singlet is common to all hadrons 

and in particular to all baryons.  Earlier it was noted that the ++ with J3 = 3/2 is 

described by the symmetric wave function u u u .  This is symmetric, but it should be 

antisymmetric under exchange of identical quarks.  The addition of the color singlet state 

to the overall wave function makes it antisymmetric.  In general the inclusion of this color 

singlet in the over all wave function means that only symmetric representations of the 

remaining product of factors (space ×spin×flavor) in the wave function can be used.  

 

There is a great deal more to the graphical representation used above and its relation to 

group theory.  But the brief introduction given above is perhaps enough to set the stage 

for approaching the literature and the physics as it evolved historically.  In addition many 

topics have been ignored, such as quark orbital angular momentum and complexities 

related to spin and quark magnetic moments.   

 

The Standard Model is perhaps the greatest achievement of modern physics.  This essay 

does not even begin to cover the enormous work of the many hundreds, if not thousands, 

of people over many years that allowed the many experimentally observed particles to fit 

into the group structure of the Standard Model.  Almost all of the physics involved in 

this achievement has been ignored. 
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There are, however, some issues that the Standard Model does not even address as well as 

significant conceptual problems raised by the nature of the vacuum.  We begin with the 

issue of color confinement and then move on to the broader conceptual problems. 

 

Color confinement 

Because the gluons of QCD carry color charge, unlike photons, they have three and four 

gluon self-interactions as illustrated below. 

 
These interactions are thought to be responsible for color confinement, asymptotic 

freedom (meaning that the quark-quark interaction becomes weaker at short distances 

allowing perturbation theory to be applicable), and chiral symmetry breaking.  Zero-mass 

quarks would travel at the speed of light and their spin can be aligned either along the 

direction of motion or opposite to it.  This handedness, or chirality, is Lorentz invariant,  

and this symmetry is explicitly broken when the quark mass is not neglected. 

 

The color potential for quark-quark and quark-antiquark interactions is given by 

quark quark: V r = +C S
r quark antiquark: C S

r .  

An overall minus sign, including that of C, is binding.  The constant C can be determined 

from the components of the i matrices, summed over the complete set of matrices, as 

C ik jl = 14 ij
a

kl
a

a=1

8

.  

One readily calculates that, for example, 

C rr rr = 13 C rg rg = 1
6 C rg gr = 12

C rr rr = 13 C rg rg = 1
6 C rr gg = 12.

 

One can show that for color singlet mesons given by the wavefunction 

> = 1
3 rr + gg + bb ,  
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one gets the potential 

Vqq r = 4
3

S
r ,  

which is negative so that for short ranges the color singlet mesons are bound.  On the 

other hand, for the quark-antiquark states in the color octet, for example = rb  and 

for which C rb rb = 1
6 , one gets the potential 

Vqq r = 16
S
r ,  

so that the short-range potential is repulsive.  

 

The overall quark-antiquark potential, important for quark and color confinement, is 

illustrated below: 

 
At small distances, r < 1fm, the potential is coulomb like, but it becomes proportional to 

the separation at larger distances, corresponding to r > 1fm.   is the constant of 

proportionality and s is the strong coupling constant, which is not a true constant but 

rather a �“running constant�” that decreases with increasing Q, the 4-vector energy 

momentum transfer of the interaction. To first order it is given by 

s = 12
33 2N f ln Q2/ 2 ,  

where Nf is the number of allowed quark �“flavors�” and  is an experimentally determined 

scale parameter (~0.2 GeV).  Experimentally, s as a function of energy looks like: 
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The linear nature of the potential at large distances compared to 1fm tells us that the lines 

of force between gluons are squeezed together into a �“flux tube�” having constant energy 

density per unit length governed by the constant .  The chromoelectric field thus has a 

string-like character as shown below.  As a result, quark-antiquark pairs cannot be 

separated, but as the distance between them increases, the energy stored in the gluon field 

will exceed a threshold where the pair will break into two pairs, a process known as 

hadronisation or fragmentation.  A notional idea is given by the following sketch: 

 
 

Note that the flavor of the quarks in this figure is not specified.  If the flavor is the same 

for the quark and antiquark, it is possible for the pair to mutually annihilate. 

 

One explanation for the formation of the flux tube is that gluon-gluon self-interactions 

squeeze the flux lines together.  Individual gluons that comprise the �“chromoelectric 

field�” illustrated in the figure carry color.  Color-anticolor pairs of gluons are color 

q 

q q 
q q 

q 
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neutral and should strongly attract each other.  Also, anti-symmetric states of unlike color 

charges are attractive while symmetric states are repulsive.   

 

Another possibility is that there exists a vacuum screening current�—in analogy with the 

screening current for magnetic fields in conventional BCS superconductors�—except that 

it would be the chromoelectric field that would be excluded or confined to the equivalent 

of a single vortex flux line in a type II superconductor.  (An array of flux lines would not 

be expected to be an analogue since the individual flux vortices in a conventional type II 

superconductor are mutually repulsive.) 

 

Yet another approach to understanding color flux-tube formation is to think of the 

vacuum as a dual color superconductor.   The term comes from the fact that in 

electromagnetism the duality operation exchanges electric and magnetic fields, and here a 

dual superconductor is defined as a superconductor in which the roles of the electric and 

magnetic fields are interchanged.  In the usual superconductor, it is the condensation of 

Cooper pairs formed from the pairing of negatively charged electrons that results in the 

superconductivity responsible for the Meissner effect; the concept of a dual 

superconductor has magnetic charges instead of electrons that form boson pairs that 

condense to form a color superconductor that is thought to be responsible for the 

analogue of the BCS Meissner effect, and would therefore be expected to exclude color 

electric fields.  It is Gauss�’ law that prevents the color-electric field from disappearing 

completely. The most important difficulty with this idea is that there is no evidence that 

color-magnetic charges exist, and the contention that their condensation would lead to the 

confinement of quarks remains highly speculative.  Even so, the vacuum does seem to 

have the properties, at least conceptually, of such a dual superconductor. 

 

There is some expectation that a color superconductor, albeit not a dual color 

superconductor, could exist.  It is possible that matter at ultra-high densities could be 

described in terms of a color superconductor.   In the central regions of some stars, 

baryons could approach close enough that their wave functions would overlap, and with 
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increasing density the quarks comprising the baryons would become mobile, ultimately 

resulting in a quark-gluon plasma, for which there is experimental evidence. The 

explanation of superconductivity goes something like this:  At sufficiently low 

temperature and high density the quarks would form a degenerate Fermi liquid.  Because 

quarks interact only weakly at short distances (asymptotic freedom), quarks near the 

Fermi surface are almost free and, unlike electrons in a BCS superconductor, already 

have a weak attraction.  It is argued that the weak attraction under these conditions is 

sufficient to allow quarks to pair up as bosons so that they could undergo condensation 

for color superconductivity to appear.  Because pairs of quarks cannot be color neutral, 

the condensate will break the local color symmetry making the gluons massive. The quark 
pairs would play the same role as the Higgs particle in the standard model.  
 

Here is a notional idea of what the phase diagram for such strongly interacting matter 

might look like: 

 
Tc is the critical temperature and µ the chemical potential, defined as the partial 

derivative of the energy with respect to particle number at constant entropy and volume.  

As one can see, for low enough temperature and high enough density, a color 

superconductor is expected to form.  

Problems with the Standard Model 
There are a number of questions that are not answered in the Standard Model: Why are 

there three families of quarks and leptons?  What is the relationship, if any, between 

quarks and leptons?  There are three arbitrary coupling constants associated with the 

constituent gauge groups of the Standard Model whose value has to be put in by hand.  

Because the Weinberg mixing angle is arbitrary, there is significant mixing�—making the 
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weak and electromagnetic forces appear related�—only because experiment shows the 

coupling constants are of the same order of magnitude.  The situation would be different 

if the mixing angle was close to zero or /2. The quantization of charge is not explained 

since it is put into the theory arbitrarily when assigning values to the weak hypercharge.  

The Standard Model requires only one Higgs boson, but going beyond the model there 

may be an expanded �“Higgs sector�” with a number of Higgs bosons, neutral as well as 

charged.  At this point there is no strong evidence for an expanded Higgs sector.  In the 

Standard Model, neutrino masses are zero; yet there is good experimental evidence for a 

small neutrino masses and for neutrino oscillations�—where neutrinos change their flavor.  

The most popular approach to these problems is to assume the fields of the Standard 

Model are fundamental, but that they are related by additional symmetries that are broken 

at higher energy scales.  None have yet proved satisfactory. 

A few metaphysical thoughts 
Perhaps the greatest fundamental problem with the Standard Model is that its redefinition 

of the vacuum begins to make it look like some form of aether, albeit a relativistic one!  

One begins to wonder whether the imposition of analogies from condensed matter 

physics, and in particular superconductivity, are not unwarranted.  Surely they should not 

be taken literally.  The fact that they �“work�”, in the sense of supplying an intuitive 

mechanism, should instead be simply taken as a hint about the real nature of the vacuum.  

The �“vacuum�”, of course, is just another name for the space-time continuum in the 

context of quantum field theory, and about which we know very little except for what 

hints we have from relativity and those given by its definition in the Standard Model.   

 

That there were some problems with the foundations of quantum field theory were 

mentioned earlier in this essay.  There are in fact, far deeper problems than were 

discussed above, which derive from the well-known fact that the basic assumptions of 

QFT are inconsistent.  The essence of the problem is Haag�’s theorem, which raises 

serious questions about the interaction picture that forms the basis for perturbation 

theory.  Because there is a direct bearing on the vacuum, it is worth going into the 

problem, at least to some extent. 
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With some simplifications, and simply to emphasize their reasonableness, the usual 

postulates of QFT are: 

1. The state vectors of the quantum system form a separable, normalizable Hilbert 

space with positive definite metric. State vectors are related to each other by 

unitary representations of the system�’s symmetries. 

2. The Hilbert space has a vacuum state |0>, which is invariant under Poincaré and 

any other symmetry transformations associated with the system. 

3. The fields (x) are �“smeared�” in the sense that there exists an operator 

f = f x x dx , whose domain in Hilbert space is a linear manifold 

containing the vacuum state.  Under a Poincaré transformation, this linear 

manifold is mapped onto itself, and the smeared fields transform covariantly. 

4. The field operators at space-like separated points either commute or anticommute 

with each other.  This is essentially a locality postulate. 

5. The result of applying all polynomials of the smeared fields onto the vacuum state 

|0> results in a dense set in the linear manifold of  postulate 3.  

 

If, in addition, we require (a) that the equal time commutation relations are true for the 

fields, (b) that these commutation relations do not permit inequivalent representations, 

and (c) that asymptotic fields are in the Hilbert space, then Haag�’s theorem states that the 

resulting field theory is for non-interacting particles.  Or put another way, Haag�’s 

theorem states that the interaction picture exists only if there is no interaction.  There are 

various proofs of Haag�’s theorem, but except for philosophers of science, the theorem has 

generally been ignored after the 1970s.   

 

The way chosen by most theorists out of this conundrum is to allow inequivalent 

representations; i.e., give up (b).  One then attempts to use the dynamics of the system to 

choose one representation from all possible inequivalent representations.  That the 

different representations are unitarily inequivalent means that there is no longer, for the 
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theories associated with each representation, an isomorphism between the states or the 

observables of the two theories.  

 

When dealing with inequivalent representations, the assumption of the uniqueness of the 

vacuum is only valid in one particular representation. As a result, giving up (b) leads to a 

degeneracy of the vacuum. This results in a theory with a broken symmetry.  It is 

extremely interesting, especially from the Standard Model point of view, that symmetry 

breaking already occurs when choosing the most acceptable way to deal with Haag�’s 

theorem.  We now give a simple example of a symmetry that does not have a unitary 

implementation.  

 

Consider the Lagrangian 12 µ

µ
, which is invariant under the global translation 

x x + , where  is a space-time independent constant.  This invariance applies 

to the Lagrangian but it cannot be unitarily implemented in the space of states.  To show 

this we will assume that such a unitary transformation exists and show that this 

assumption results in a contradiction.  First of all, using the standard normal mode 

expansion, we know that <0| (x)|0> = 0.  If a unitary operator did exist for the 

transformation x x +  one could write 

x = x + = U x U †
,  

where U = exp(i Q) and Q is a Hermitian generator of the transformation.  Q operating 

on the vacuum state would be expected to result in the eigenvalue 0, so that  

<0|U( ) = <0| and U�†( ) |0> = |0> as well (expand the exponential).  Since <0| (x)|0> = 0, 

the vacuum expectation value of (x) would be  <0| (x)|0> = .  But from the above 

equation,  

<0| (x)|0> = <0|U( ) (x) U�†( )|0> = <0| (x)|0> = 0, 

so there are two values for the vacuum expectation of (x), a contradiction that implies 

that a unitary operator does not exist.  Compare this with the discussion of spontaneous 

symmetry breaking in the earlier part of this essay.  We see that when the Lagrangian has 

a symmetry that cannot be represented in terms of unitary operators on the state space the 

symmetry is hidden or spontaneously broken. 
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The electro-weak and QCD symmetry breakings of the Standard Model are generally 

interpreted as phase transitions in the early, expanding universe that took place after what 

Fred Hoyle derogatively called  �“the big bang�”.  As the universe cooled, it presumably 

passed through some critical temperatures corresponding to the energy scales of these 

transitions.  The various parameters at different times are expected to look like: 

 

 

 
 

It was explained above that zero-mass quarks would travel at the speed of light and their 

spin could be aligned either along the direction of motion or opposite to it.  This 

handedness, or chirality, is Lorentz invariant, and this symmetry is explicitly broken 

when the quark mass is not neglected.  In the cooling universe scenario, the critical 

temperature Tc , corresponding to the chiral and confinement transitions, when quarks 

become bound, are thought to be similar.    At T > Tc , chiral symmetry is obeyed, and the 

vacuum expectation value of the quark-antiquark condensate, 0 qq 0 , is zero. As the 
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temperature falls below Tc , chiral symmetry is spontaneously broken, and the vacuum 

expectation value of the condensate becomes nonzero.   

 

The result of a non-zero vacuum expectation value is that the vacuum energy density, 

associated with such condensates, is enormous.  Some estimates from the literature are:  

vac
EW ~ 1046 erg/cm3; vac

QCD  ~ 1036 erg/cm3;  provided we set V( ) = 0 for  = 0, and take the 

Higgs coupling constant as roughly the square of the fine structure constant, the Higgs 

vacuum energy density would be vac
Higgs = 1043erg  cm3

.   

 

If the electroweak and QCD symmetry breakings of the Standard Model are taken to be 

phase transitions in the early, expanding universe, then general relativity must apply.  If, 

further, the vacuum energy densities are real, they must appear in Einstein�’s equations in 

conjunction with the consmological constant. For the static Einstein universe, the relation 

between the radius of curvature of the universe and the cosmological constant is 

8 G = 1
a2
= ,  

where  is the mass density of the dust filled universe (with zero pressure) and a is the 

radius of curvature.  For the vacuum energy densities associated with the electroweak 

sector or QCD, this equation tells us that the universe would essentially shrivel to almost 

nothing, or as famously attributed to Pauli, the radius of the world �“nicht einmal bis zum 

Mond reichen würde�” [would not even reach to the moon].   

 

Turning to the modern context, we would write an equation relating the effective 

cosmological constant to the various vacuum energy densities as follows: 

eff = 0 + 8 G
c4 vac ,  

where 0 is Einstein�’s original cosmological constant, and vac includes contributions 

from any zero-point energies, vacuum fluctuations, the Higgs field, and QCD gluon and 

quark condensates.   
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The experimental value for the energy density associated with the cosmological constant 

is vac
CosCnst = 10 8erg  cm3

.  The conclusion that must be drawn from this is that the 

equation above for eff is wrong; that is, in terms of gravitation, the various vacuum 

energy contributions are effectively zero, either because they represent artifacts of the 

quantum theories or because they are cancelled out by some unknown mechanism.  It 

would be extremely unlikely that the negative vacuum energy associated with the Higgs, 

with its arbitrarily chosen zero (V( ) = 0 for  = 0), along with similar negative 

contributions, would exactly cancel out the remaining positive energy contributions.   

 

The evidence given to support the reality of the various contributions to the vacuum 

energy is the Casimir effect, which is a consequence of the lowest order vacuum 

fluctuations, and higher order effects like the Lamb shift.  But there are alternative 

explanations.  The Casimir effect could result from fluctuations associated with the 

constituents of the plates rather than vacuum fluctuations.  Schwinger�’s source theory 

takes this point of view and avoids vacuum fluctuations in both the Casimir and higher 

order QED effects.  As Schwinger put it, �“. . . the vacuum is not only the state of 

minimum energy, it is the state of zero energy, zero momentum, zero angular momentum, 

zero charge, zero whatever.�”  Pauli also seemed to agree with this position when 

commenting on field fluctuations in quantum field theory, �“. . . it is quite impossible to 

decide whether the field fluctuations are already present in empty space or only created 

by the test bodies.�”  

 

The possibility has also been raised that one should allow the vacuum to have a negative 

energy spectrum as is done in the Dirac hole theory (of course, Dirac filled up these 

states); the idea being that positive vacuum energy density contributions would be exactly 

cancelled by compensating negative energy contributions.  Interestingly enough, this 

possibility is not seriously considered in the literature despite the fact that Schwinger 

long ago showed that if QFT is to be gauge invariant there is a term (called the 

Schwinger term) that must vanish.  He then showed that if the term does vanish, the 

vacuum state couldn�’t be the state with lowest field energy.  As put by Schwinger, �“. . . it 

is customary to assert that the electric charge density of a Dirac field commutes with the 
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current density at equal times, since the current vector is a gauge-invariant bilinear 

combination of the Dirac fields.  It follows from the conservation of charge that the 

charge density and its time derivative, referring to any pair of spatial points at a common 

time, are commutative.  But this is impossible if a lowest energy state�—the vacuum�—is 

to exist.�”  Since the argument is rather opaque in the 1959 Physical Review Letters 

article, a derivation is given in Appendix II below for those readers interested in the 

details.  

 

It is not my intent to explore any particular solution to this �“cosmological problem�”, but 

rather simply point out that it is a serious issue lying at the foundation of the various field 

theories that has not really begun to be resolved.  Both quantum field theory and general 

relativity have had spectacular success in explaining the domains of their applicability, 

but there is no experimental evidence that there is a close relationship between the two.  

All such claims that a relationship exists are based on theoretical expectations. 
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Appendix I: Spinor Representations of the Lorentz 
Group 
 
If 

µ
 is a Lorentz transformation one has 

µ xµx .  

Because this is true for all xµ,  

µ = µ .  

The group of matrices  satisfying this relation is a Lie group called O(3,1).  The elements 

of O(3,1) that can be built up infinitesimally from the identity is a subgroup called 

SO(3,1).  Thus, the Lorentz transformations infinitesimally close to the identity must 

have the form 
µ = µ

+ µ ,  

where µ  is a matrix of infinitesimal coefficients.  Inserting this into the previous 

equation for µ  shows that µ  is antisymmetric on its indices.  With the convention that 
00 = 1 and ii = 1, the most general form for µ  is 

µ =

0 b1 b2 b3
b1 0 r3 r2
b2 r3 0 r1
b3 r2 r1 0

.  

The b�’s give infinitesimal boosts in the subscripted directions and the r�’s rotations about 

the indicated axes.   

 

To operate on Hilbert space, each element   SO(3,1) must have associated with it a 

unitary operator U satisfying 

U 1 U 2 = U 1 2 .  

Infinitesimally close to the identity, these operators can be expanded as 

U = + i
2 µ J

µ + O 2 ,  

where the operators Jµ  are antisymmetric in µ and .   This series can be written in 

exponential form as  
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U = e
i
2 µ Jµ .  

Defining the operators 

Ji :=
ijk

2 J jk, Ki := J i
0 , 

which are, respectively, the generators of rotations and boosts along the i-axis.  These 

operators satisfy the commutation relations 

Ji, J j = i ijkJk,

Ji, K j = i ijkKk,

Ki, K j = i ijkJk.

 

Next, we define, in terms of the latter, the operators 

Li :=
Ji + iKi

2 , Ri :=
Ji iKi

2 , 

which obey the commutation relations 

Li, L j = i ijkLk,

Ri, Rj = i ijkRk,

Li, Rj = 0.

 

What has been done is to split the generators of SO(3,1) into two subsets that commute 

with each other and which individually satisfy the commutation relations for SU(2).  Now 

we can introduce the spinor representations. 

 

The simplest nontrivial matrices that satisfy these commutation relations are the Pauli 

matrices i .  Now set Li and Ri in the above equation equal to i /2 and 0 respectively; 

then invert the relations to find Ji and Ki as   

Ji = i
2 , Ki = i i

2 . 

This corresponds to a left-handed spinor and, for spin ½ is designated by (0, ½).  They 

satisfy the set of commutation relations given above for J and K.  Alternatively, if we set 

Li and Ri in the above equation equal to 0 and i /2 respectively, and then again invert the 

relations to find Ji and Ki ,  we would obtain   

Ji = i
2 , Ki = i i

2 . 

This corresponds to a left-handed spinor and, for spin ½ is designated by (½, 0).   
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If, as in the body of this essay, we consider fields and designate the right and left-handed 

spinor fields as R and L, and put them together into a 4-spinor, it would transform 

under a Lorentz transformation as 

= R

L
=
e

i
2 ri + ib i i 0
0 e

i
2 ri ib i i

R

L
,

 

where the ri and bi are as in the expression given above for the most general form for the 
µ .   This is more general than the expression given in the body of this essay because it 

includes rotations as well as boosts.  The exponential terms in the matrix can be obtained 

from exponential form of U( ) given above, by writing  out explicitly Jµ  in terms of the 

Pauli matrices for the two choices of Ji and Ki (corresponding to (0, ½) and (½, 0), the 

left-handed and right handed spinor representations of the Lorentz group), and using the 

matrix given above for µ  to carry out the sum indicated.  Note that in obtaining the 

components of Jµ  involving time from the relation Ki := J i
0
, one must use  with 

signature +2. 

 

Appendix II: the Schwinger Term 
 

The Schwinger term is given by 

                                                   
ST y,x = y , J x .

                                                 (1)

 

Taking the divergence of the Schwinger term and using the relation 

                                                  
i H0, x = J x ,

                                                (2)
 

where H0 is the free-field Hamiltonian when the electromagnetic 4-potential vanishes, 

results in 

                          
x y , J x = y , J x = i y , H0, x .

                    (3)

 

Expanding the commutator on the right hand side of Eq. (3) yields the vacuum 

expectation value 
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i x 0 y , J x 0 = 0 H0 x y 0 +

0 x H0 y 0 + 0 y H0 x 0 0 y x H0 0 .

            (4)

 

 It is here that one makes the assumption that the vacuum is the lowest energy 

state. This done by writing H0|0> = <0|H0 = 0.  As a result, Eq. (4) may be written as 

                                      

i x 0 y , J x 0 = 0 x H0 y 0 +

0 y H0 x 0 .

                      (5)

 

Multiply both sides of the last equation by f(x)f(y) and integrate over x and y.  The right 

hand side of Eq. (5) becomes  

                 
dx dy 0 f x x H0 f y y 0 + 0 f y y H0 f x x 0 .

           (6)
 

If Schwinger�’s �“arbitrary linear functional of the charge density�” is defined as 

                                     
F = f x x dx = f y y dy ,

                                    (7)
 

the right hand side of Eq. (5) becomes 

                           

2 0 FH0F 0 = 2 0 F m m H0 n n F 0 =
m,n

2 En 0 F n n F 0 =
n

2 En 0 F n
2

n
> 0.                             (8)

 

The left hand side of Eq. (8)�—essentially the form used by Schwinger�—is here expanded 

to explicitly show the non-vanishing matrix elements between the vacuum and the other 

states of necessarily positive energy.  This shows that if the vacuum is assumed to be the 

lowest energy state, the Schwinger term cannot vanish, and the theory is not gauge 

invariant.   

 For the sake of completeness, it is readily shown that the left side of Eq. (5) 

becomes 

                    
i x 0 y , J x 0 f x f y dxdy = i 0 tF, F 0 ,

                  (9)

 

so that combining Eqs. (8) and (9) yields a somewhat more explicit form of the result 

given by Schwinger, 

                                i 0 tF, F 0 = 2 En 0 F n
2

n
> 0.                                     (10) 
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