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Abstract.  Plane electromagnetic and gravitational waves interact with 

particles in such a way as to cause them to oscillate not only in the 

transverse direction but also along the direction of propagation.  The 

electromagnetic case is usually shown by use of the Hamilton-Jacobi 

equation and the gravitational by a transformation to a local inertial frame.  

Here, the covariant Lorentz force equation and the second order equation 

of geodesic deviation followed by the introduction of a local inertial frame 

are respectively used.  It is often said that there is an analogy between the 

motion of charged particles in the field of an electromagnetic wave and the 

motion of test particles in the field of a gravitational wave.  This analogy 

is examined and found to be rather limited.  It is also shown that a simple 

special relativistic relation leads to an integral of the motion, characteristic 

of plane waves, which is satisfied in both cases.  

PACS: 41.20Jb, 04.30-w. 
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Introduction 

It has been known for some time that the interaction of a plane electromagnetic wave 

with a test charge induces a motion, exclusive of that due to radiation pressure,1 along the 

direction of propagation.2  This is usually demonstrated by use of the Hamilton-Jacobi 

equation.  A simpler approach, using the relativistic Lorentz force equation, will be used 

here to illustrate a class of motions that initially appears very similar to those produced 

by plane gravitational waves.  With regard to the latter, induced motion along the 

direction of propagation has also been known for some time,3 although in this case there 

is greater confusion in the literature since, when sources are present, it is possible to 

choose gauges4, such as the Lorentz gauge, where non-radiative parts of the metric obey 

wave equations.  The origin of this confusion dates back to at least Eddington5, and a 

very clear exposition of this problem has been given by Flanagan and Hughes6 and 

Ciufolini, et al.16 

 

In both cases it will be seen that the momentum along the direction of propagation is 

related to the time-like component of the 4-momentum.  This is due to the wave nature of 

the propagation and the relation between the two components of momentum is obtained 

in the first section that discusses the interaction of an electromagnetic wave with an 

electron.  The second section covers the gravitational case.  It shows the significantly 

different behavior of test particles under the influence of a gravitational wave compared 

to a charged particle responding to an electromagnetic one.  

 

Interaction of a plane-polarized electromagnetic wave with an electron 

A charged particle under the influence of a continuous plane electromagnetic wave can 

only gain momentum in the direction of propagation (the behavior under interaction with 

a short pulse of radiation is, however, more complex7).  The momenta in the transverse 

direction will be oscillatory and will not lead to a net momentum gain.  As a result, one 

can expect a relationship to exist between the time-like component of the 4-momentum 

and the momentum in the direction of propagation.   
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Much of the behavior of the particle can be understood from its motion in a frame where, 

as put by Landau & Lifshitz,2 the particle is “at rest on the average”.  Although it is the 

interaction of the particle with the magnetic component of the electromagnetic plane 

wave that is responsible for the particle’s motion in the direction of propagation, it will be 

seen that one need not include the magnetic component in the equations of motion to 

determine the momentum in the direction of propagation.  This may be found from the 

time-like component.   

 

The relevant 4-vectors and relations, using the conventions from Jackson,8 needed to 

derive the required relationship are 

                           (1)
 

where the symbols have their usual meanings.†  The equation of motion is 

                                                                                                          (2)
 

For a plane polarized wave traveling in the -direction, the following relations hold 

                                                                                          (3) 

Thus, using the first of Eqs.(3) in Eq. (2) and expanding the resulting triple product, one 

obtains 

                                                                                   (4)
 

where p = γmv.  Dotting through with  yields the simple expression 

                                                                                                              (5)
 

Remembering that the 4-velocity and 4-acceleration are perpendicular, Eqs (1) imply that 

                      (6)                                                      
 

                                                
† Here x is the 4-vector of position. Contravariant components are indicated by Greek symbols 
with the superscript 0 being time like.  The signature is +2.  k is the 4-dimensional wave vector; p 

the 4-momentum; dτ the proper time; ; ε is the energy; m the mass; and c 
the velocity of light. 3-vectors  are in bold type.  
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Equation (2), when dotted with v, then gives 

                                                                                                                        (7) 

Thus, from Eqs. (5) and (7) 

                                                                                                            (8)
 

Integrating with respect to time and evaluating the right hand side between the limits 

given by the initial energy and that at time t results in 

                                                                                                             (9) 

where ε0 is the initial energy of the particle.  The right hand side of this equation is a 

constant and can be written as  

                                                                                     (10) 

The quantity within the brackets of Eq. (10) is simply the expansion of the relativistic 

initial energy of the particle ε0 = γmc2. A similar derivation has been given by 

Kolomenskii and Lebedev.9  Equation (10) implies that if the initial velocity v0 vanishes, 

the right hand side of Eq. (9) reduces to unity.  This will be assumed to be the case in 

what follows. 

 

Now let  so that the space-time dependence of a plane wave propagating in the 

 x3-direction would be kx3 – ωt, where k = ω/c.  This dependence may be written as  

                                                                                                              (11) 
which also defines η.  Taking the derivative of η with respect to proper time gives 

                                                                                                              (12) 

The right hand side of Eq. (12) is the same as the negative of the left hand side of Eq. (9) 

when , so that if the initial velocity vanishes, dη/dτ = −1 Now, Eq. (12) may be 

rewritten as 
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                                                                             (13) 
or, 

                                                                                                                (14)
 

Thus, for a plane wave having the space time dependence of Eq. (11), we have that 

                                                                                                                      (15)
 

Equation (14) is, for the conditions given, a constant of the motion, and Eq. (15) will be 

used to determine the momentum in the x3-direction in the electromagnetic case, and will 

be found to also be satisfied in the gravitational case. 

 

Equation (15) is a consequence of the wave depending on the phase (kx3 − ωt) rather than 

being a general function of x3 and t.  Since the velocity of propagation of a plane 

monochromatic wave is the velocity with which the planes of constant phase move, 

taking the derivative with respect to time of (kx3 − ωt) = const. gives dx3/dt = c.  

Multiplying by γm and using the definitions in Eqs. (1) gives p3 = p0, and taking the 

derivative with respect to proper time gives Eq. (15). 

 

The motion of the particle may now be determined by assuming that the vector potential 

of the plane wave has the form 

                                                                                                 (16) 

where, 

                                                                     (17) 

and A0 and B0 are constants.  B0 = 0 corresponds to linear polarization, A0 = B0 to circular 

polarization, and A0 ≠ B0, where both are not zero, to elliptical polarization. 

 

The following will show that it is only necessary to consider the electric component of 

the plane wave (as mentioned above).  Eq. (2) determines the x1 and x2 components of the 

force as  
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                                                                                                          (18)

 

where  has been used.  From Eqs. (1), (6), and (7) 

                                                                                  (19)
 

which in turn may be written as 

                                                                           (20)
 

Using Eq. (16) and noting that , Eq. (20) becomes 

                                                                           (21)
 

From Eq. (15), the third component of the force is then 

                                                                           (22)
 

Equations (18) may be immediately integrated to  

                                                                                                               (23)
 

so that Eq. (22) becomes 

                                                                  (24)
 

Remembering that dη/dτ = −1this is integrates to 

                                                                                      (25)
 

Using Eqs. (17), 

                                                  (26)
 

This is again easily integrated and doing so results in 
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                                                      (27)
 

The first term in the parentheses of Eq. (27) may be eliminated by a Lorentz 

transformation to a frame where the particle is “at rest on the average”.  This is the frame 

where only the oscillatory motion is evident and will be called here the “rest frame” in 

quotes.  To determine the velocity associated with the transformation, one uses the 

definition of η and takes the derivative of Eq. (27) with respect to t using only the first 

term within the brackets, and solves for the velocity.  Its value will play no role in what 

follows. 

 

The expressions for p1 and p2 in Eq. (23) may be integrated to give 

                                                                                                       (28)
 

Note that if one defines 
 
 and 

 
, then Eqs. (28) give the equation of 

the ellipse 

                                                                                                            (29)
 

 

For a linearly polarized wave, B0 = 0 and a plot of x3 as a function of x1 results in the well 

known figure eight plot shown in Fig. 1. 
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Figure 1.  Electron motion in the “rest frame” under influence of a 
linearly polarized plane electromagnetic wave. 

 

For an elliptically polarized wave, where A0 ≠ B0, a parametric plot, where the amplitude 

of the coefficients is varied while maintaining their ratio, may be made of Eq. (27) and 

Eqs. (28).  The result is a surface of the motion as shown in Fig. 2.  Note that because of 

the sin2ωη term, the saddle shaped surface has two radial nodal lines. 

 

 
Figure 2.  Surface of electron motion in the “rest frame” under influence 
of an elliptically polarized plane electromagnetic wave. 

 

Increasing radial distance in this figure corresponds increasing wave amplitude while an 

electron at any given “radius” follows an elliptical path modulated by the sin2ωη term.  

This gives a saddle shaped surface of negative curvature.  For circular polarization where 

A0 = B0, the sin2ωη term vanishes and the motion is simply circular. 
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As mentioned above, it is the interaction of the electron with the magnetic component of 

the plane wave that is responsible for the motion in the x3-direction.  Since electric and 

magnetic components of the wave have the same time dependence given by cosωη, the 

equations of motion imply that the velocity gained by the electron due to the electric field 

will have the time dependence sinωη.  The time dependence of the v×B term in the 

equations of motion will then be sinωη cosωη or sin2ωη, so that the appearance of this 

term should be no surprise.  It means that the electron can be expected to oscillate with 

the frequencies ω and 2ω as has been shown to be the case above. 

 

Interaction of a plane-polarized gravitational wave with small massive particles 

In the case of electromagnetism treated above, in order to show the motion along the 

direction of propagation a Lorentz transformation was made to a frame where the test 

particle was “at rest on the average”.  A similar approach, one suited for general 

relativity, will be used here.  This will be done by introducing a coordinate system that in 

the literature is called a “local inertial frame”.  This is equivalent to choosing locally 

geodesic coordinates.  Originally, in studying the intrinsic geometry of surfaces, geodesic 

coordinates were defined in a coordinate patch where two sets of parametric curves are 

orthogonal and the parametric curves of one of these sets are geodesics.  Such 

coordinates can be generalized to space-time and constitute a “local inertial frame”; i.e., 

the local frame of a freely falling observer.10 

 

It will be assumed that the reader is familiar with the equation of geodesic deviation, 

which measures tidal effects in a freely falling frame.  With reference to Fig. 3, it is given 

by (Greek indices take the values 0 through 3 and Latin 1 through 3) 

                                                                                                        (30)
 

where D/ds is the absolute derivative (also known in the literature as the intrinsic or 

covariant derivative along a curve, identified in Fig. 3 as the geodesic p0).  Rµ
λρσ is the 
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Riemann curvature tensor; uλ the tangent to the curve xλ(s, p0); and nσ the deviation 

vector.  

 

Equation (30) is a linear approximation to the deviation vector nσ. What will be needed 

here is the second order equation of geodesic deviation.  This will be used to show that 

gravitational waves, like electromagnetic waves, induce test particle motions in directions 

other than those that are transverse to the direction of propagation.  Fundamental work in 

this area has been done by Bazanski11 and Kerner12.   

 

A Taylor expansion of xµ(s, p) with respect to p is (care should be taken here to not 

confuse the parameters p or p0 with the momentum) 

                          (31)

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  A one parameter set of geodesics xµ(s, p), with tangent vector 
uµ = ∂s xµ and  deviation vector nµ = ∂p xµ.   

 

nµ = ∂p xµ 

uµ = ∂s xµ 

p0 p 

xµ(s, p0) 

xµ(s, p) 
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The second order term in the expansion of Eq. (31) may be written as 

                                                                               (32)
 

Let the second order deviation vector be defined as 

                                                                                             (33)
 

where the Γµ
νλ are the connection coefficients, otherwise known as the Christoffel 

symbols.   

 

Setting p0 = 0, and using the fact that nµ = ∂p xµ, the second and third terms in the 

expansion in Eq. (31) are 

                                                      (34)
 

 

With regard to Fig. (3), if the geodesic identified by p0 = 0 has introduced along it a local 

inertial frame so that uα = (1,0,0,0), the  will vanish along this geodesic. This 

suggests, following Baskran & Grishchuk13, that one introduce the vector 

                                                                                                       (35) 

The spatial components of Nµ will then give the position of a nearby particle with respect 

to the local inertial frame.  The covariant derivative of Nµ along this geodesic is 

                                                                                        (36)
 

The first term on the right hand side of Eq. (36) can be found from the first order 

geodesic equation given by Eq. (30).  The second term, involving the second order 

deviation vector bµ, has been given by Bazanski11 as 

                                    (37)
 

where the semicolon indicates the covariant derivative.  Making the substitutions into Eq. 

(36) results in 
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                          (38)
 

This is the key equation and will be used in what follows.  Of course, substituting Nµ into 

this equation from Eq. (35) and gathering terms by order in p yields the first order 

geodesic equation and Eq. (37).   

 

In what follows, attention will be restricted to weak gravitational waves where the metric 

may be written in synchronous coordinates (where g0i = 0, g00 = −1, and time lines are 

geodesics normal to the hypersurfaces t = constant) as  

                                                                                           (39) 

The last term on the right hand side of Eq. (38) is of order hij
2 and, consistent with the 

weak field approximation where only terms linear in hij are retained, may be ignored in 

what follows. 

 

Further simplification of Eq. (38) may be had by recognizing that the introduction of a 

local inertial frame, as was done above to motivate the vector introduced in Eq. (35), 

means that all of the covariant derivatives in Eq. (38) can be replaced with ordinary 

partials, and D2/ds2 may be replaced by d2/c2dt2.  Further restricting Eq. (38) to the spatial 

variations, which henceforth will be of interest, yields  

                                                                           (40)
 

With reference again to Fig. 3, as discussed earlier p0 defines a time-like geodesic 

 xi(t) = 0, and a local inertial frame is introduced at each point along it (geodesic 

coordinates).  A point on the nearby geodesic p will have a position  at time t = 0.   

Eq. (40) will be used to find the trajectory of the point .   

 

The deviation vector N i may then be written as 

                                                                                                                (41) 

where, again,  is the original position at time t = 0, and ξi(t) is the perturbation caused 

by the passing gravitational wave in the frame of the inertial coordinates ξ i.  Since  is 
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not a function of time, and since the curvature tensor and ξ i are of first order in hij, Eq. 

(40), retaining terms only to first order in hij, becomes 

                                                                                (42)
 

The surviving components of the curvature tensor for a plane gravitational wave in the 

transverse traceless gauge have been given by a number of authors including Misner, 

Thorne, and Wheeler14.   

 

Consideration in what follows will be restricted to the + polarization.  With reference to 

the metric of Eq. (39), the curvature tensor components all have the form , where the 

dot corresponds to differentiation with respect to t.  Equation (42) becomes, using 

conventions that conform to the literature cited,  

                                                                        (43)
 

The derivation of the term  requires the use of the Bianchi identity contracted 

with the symmetric product  to show the symmetry of  with respect to j and k, 

which results in the factor of ½ in this term rather than the ¼ that might be anticipated.  

The term  is arrived at as follows:  has the form 

                                                                                                   (44) 

where  is the polarization tensor, whose components here are restricted to , and 

.  From the form of Eq. (44) it is readily seen that taking the derivative of  with 

respect to x0 is equivalent to applying the operator .  Because Eq.(44) only 

depends on x3, only  is non-zero.   

 

Extending Eq. (43) to include the ξ0-term, which will play only a very limited role in 

what follows, results in .  Using this and substituting Eq. (44) into  

Eq. (43) results in the following set of equations: 
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                                      (45)

 

Comparing the first and last of these equations, shows that 

                                                                                                                    (46)
 

The variations of the position and energy of particles in the ξ-frame, where the particles 

are on the average at rest, are small and proportional to h+.  As a result, Eq. (46) can be 

put into the same form as Eq. (15).   

 

Equations (45) are easily integrated, and with appropriate constants of integration yield 

                                             (47)

 

These are essentially the same equations as those found by Grishchuk15 and, when  is 

set equal to , correspond to a coordinate transformation between the local inertial and 

synchronous reference frames.  Henceforth, ξ0 will play no role. 

 

The effect of the wave, represented by Eqs. (47), can be seen in 3-dimensional space as 

follows: consider the motion in the ξ1,ξ2-plane, and set .  Introduce a circle of test 

masses by transforming the initial positions  to the cylindrical coordinates 

.  r0 will be held fixed and θ will be allowed to vary so as to 

show the effect of the wave on the motion of a set of test masses distributed around the 

central geodesic identified above as p0.  Without including motion in the ξ3-direction, the 
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effect on such a circle of test masses is shown in Fig. 4(a).  The vertical direction 

corresponds to the change in the phase (kx3 − ωt) and is equivalent to the time evolution. 

The vertical lines in the grid outlining the figure would correspond to the trajectory of a 

set of small test masses.  Horizontal cross sections of constant phase display the motion 

usually depicted in textbooks of the effect of a plane gravitational wave on a ring of test 

masses. 

 

Figure 4(b) includes the (exaggerated) motion in the ξ3-direction.  If one considered the 

effect of the wave on a disk of test masses, horizontal cross sections of constant phase of 

this figure would look like the surface associated with electron motion in the 

electromagnetic case shown in Fig. 2.  The horizontal grid lines of Fig. 4(b) correspond to 

the edge of this surface. 

 
          (a)      (b) 

Figure 4. The vertical axis corresponds to the time evolution of the phase (kx3 − ωt): (a) 
shows the time evolution in the ξ1,ξ2-plane ignoring any motion in the ξ 3-direction; (b) 
shows the motion with that in the ξ 3-direction included.   
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Unlike the motion in Fig. 2, however, the test particles of Fig. 4(b) do not follow an 

elliptical path around the central trajectory of the wave modulated by a trigonometric 

function of a double angle.  This is also the case for a circularly or elliptically polarized 

gravitational wave.  Instead, the motion of an individual test mass located at , 

which is not on one of the radial node lines of the constant phase surface of Fig. 4(b), is a 

combination of the motion in the ξ1,ξ2-plane with that in the ξ3-direction. This is shown 

in Fig. 5. 

 

The surfaces of constant phase in Fig. 4(b) appear to have negative curvature like Fig. 2.  

That these phase surfaces do indeed have negative curvature can be seen as follows: In 

the local inertial coordinates of Eqs. (47), Fig. 4(b) was constructed by setting  and 

then introducing the cylindrical coordinates .  The resulting 

coordinates are  

                                                                                   (48)

 

where the phase ϕ = (kx3 – ωt), when set equal to a constant, results in the constant phase 

surfaces of Fig. 4(b).  From Eqs. (48), the spatial metric in local inertial coordinates for a 

fixed value of r0 is 

 

          (49)
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      (a) 

 

 

 

 

 

 

 

 

 

      (b) 
Figure 5.  (a) shows the components of the motion.  The ellipse lies in the ξ1,ξ2-plane, 
and corresponds to a horizontal constant phase section of Fig. 4(a).  (b) shows the 
elliptical motion of a test mass located at .  Note that the plane of the ellipse in Fig. 
5(b) is perpendicular to the ξ1,ξ2-plane. 

 

ωt = 0 

ωt = π/2 

ξ3-motion 
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1, x0

2) 
Resultant motion in the ξ1,ξ2-plane 
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ξ3 

ξ2 
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Resultant motion in the ξ1,ξ2-plane 

 

 

 



 18 

The spatial curvature of the constant phase surface can be determined by computing the 

difference between the circumference of a circle of fixed radius r0 in Euclidean space and 

comparing it to one in the local inertial frame; that is, 

 

     (50)

 

When evaluating this expression for the spatial curvature, it is important to recall the 

limits of the linear approximation.  The approach of using the equation of geodesic 

deviation to determine the spatial variations is only valid if the magnitude of the 

deviation vector is small compared to the length (often called the inhomogeneity scale) 

over which the Riemann tensor changes.  In particular, the magnitude of r0 must be much 

less than the wavelength λ of the gravitational wave.   

 

The difference in Eq. (50) vanishes for r0 = 0, and is always negative for r0 > 0, 

consistent with the apparent negative curvature of the constant phase surfaces seen in Fig. 

4(b).  When plotting the difference given by Eq. (50) for different values of r0, one 

obtains a linear decrease for r0 << λ, the wavelength of the gravitational wave.  The 

difference becomes non-linear as r0 approaches λ.  This non-linear behavior is due to 

exceeding the range over which the linear approximation leading to the metric of Eq. (39) 

is valid. 

 

It should be emphasized that this should not be interpreted as meaning that the spatial 

curvature of a space-like hypersurface, where t equals a constant, is negative.  A 

gravitational wave carries positive energy, which results in a positive space-time 

curvature. 

 

 

 

 



 19 

Comparing electromagnetic and gravitational waves 

There is indeed an analogy between electromagnetic and gravitational waves.  Both have 

two linear polarizations that may be combined to yield circular or elliptically polarized 

waves.  But their effect on a set of test particles is very different.16 

 

The dynamics of a charged particle is due entirely to the Lorentz force.  The longitudinal 

motion under the influence of a linearly or elliptically polarized continuous plane 

electromagnetic wave oscillates with a frequency twice that of the transverse frequency.  

This is shown by Eq. (27) and Figs. (1) and (2) above.  The longitudinal motion vanishes 

in the case of a circularly polarized wave. 

 

The motion of a set of test particles under the influence of a plane gravitational wave 

differs considerably from the electromagnetic case.  Yet, there are similarities: not only 

do both have two independent polarization states, but when one includes the longitudinal 

motion, the surface associated with the motion of a charged particle responding to an 

elliptically polarized wave (Fig. (2)) is similar to the constant phase surfaces of a set of 

particles driven by a plane gravitational wave (Fig. 4(b)); in both cases the latter surfaces 

derive their longitudinal motion from trigonometric double angle functions.  But in the 

gravitational case, the test particles do not move around the central geodesic.  Instead, 

they have an oscillatory motion in the transverse plane, which when coupled to the 

longitudinal motion, leads to the particles moving in ellipses whose planes are 

perpendicular to the transverse plane (Fig. (5)). 

 

If one were to include the h× polarization, the ξ3-motion in Eq. (48) would have the 

additional term 

                                                                                                        (51) 

The constant phase surfaces would still have the appearance shown in Fig. 4(b), but as ϕ 

advanced from 0 to 2π, the surfaces would rotate about the vertical direction in the figure.  

The sinϕ and cosϕ terms combine with the double angle terms in a counter-intuitive 

way,17 such that a change in phase of π corresponds to a rotation about the direction of 
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propagation by π/2.  For circular polarization, where h+ = ± h×, the longitudinal motion 

does not vanish for all ϕ in contrast to the electromagnetic case. 
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