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ABSTRACT 

It is currently believed that baryon number conservation must be violated to produce a 

preponderance of baryons over anti-baryons in the early universe.  An alternative to violating 

baryon number conservation is given here that preserves CPT invariance.   
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Introduction 

The baryon-an,baryon asymmetry in the early universe cannot be explained within the 

Standard Model of particle physics and cosmology.  The idea of breaking baryon number 

symmetry between baryons and anti-baryons—resulting in C and CP invariance being 

violated—so as to obtain a preponderance of matter over antimatter is fraught with problems.  

Another approach is needed.  One is offered below.  It involves topological change, which has 

usually been ruled out, but the arguments against it have been found to be wanting.  This is 

discussed in some detail below.   

 

The FRW metric and 3-Spheres 

Seconds after the Big Bang the universe can be accurately described by an approximately 

spatially-flat, radiation-dominated FRW metric.  The designation FRW comes from Robinson 

and Walker finding that the Friedman-Lemaître metric can be put into the form  

𝑑𝑠! = −𝑑𝑡! + 𝑆!(𝑡)𝑑𝜎!,	 

where, in spherical coordinates 𝑑𝜎! is given by 

𝑑𝜎! = -𝑑𝜒! + 𝑓!(𝜒)(𝑑𝜃! + 𝜒!(𝑑𝜃! + 𝑠𝑖𝑛!𝜃	𝑑𝜙!)4. 

           Eqs. (1) 

The metric 𝑑𝜎! is a 3-dimensional hypersurface of constant curvature independent of time.  

The second of Eqs. (1) can have three values for f(𝜒) depending on the normalized curvature 

K of the universe obtained by rescaling the function S: 

𝑓(𝜒) = 6
𝑠𝑖𝑛𝜒	𝑖𝑓	𝐾 = +1
𝜒	𝑖𝑓	𝐾 = 0

𝑠𝑖𝑛ℎ𝜒	𝑖𝑓	𝐾 = −1
	. 

            Eq. (2) 
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If K = 0 or -1, the 3-dimensional hypersurfaces are diffeomorphic to three-dimensional flat 

spaces and if K = +1 it is diffeomorphic to the three-sphere 𝕊".  For K = 0 or -1, the range of 

𝜒 is 0 ≤ 𝜒 ≤ ∞, and for K = +1, the range is 0 ≤ 𝜒 ≤ 2𝜋.   

 

Current astronomical observations and measurements constrain the spatial curvature of the 

universe to be very close to zero, but cannot determine the sign of the curvature if it exists.  The 

case of a very slight positive curvature will be considered here, in which case the second of 

Eqs. (1) describes the spatial geometry of a 3-Sphere 𝕊".  A 3-Sphere is a compact manifold 

and while being finite does not have a boundary. 	This choice is made because it offers a 

possible explanation for the preponderance of baryons over anti-baryons in the early universe.  

The 3-Sphere 

The 3-Sphere can be seen to be the union of two 3-Balls by a homeomorphism1 h, which maps 

the boundary of 𝐵#" onto the boundary of 𝐵!".  This is illustrated in Fig. 1.   

 
Figure 1.  The 3-Sphere 𝕊" as a union of two 3-Balls by a homeomorphism h.  𝐵!"𝑎𝑛𝑑	𝐵#" designate the 
two 3-Balls.  If a point p is contained in the interior of 𝐵$", where i = 1 or 2, then any open set containing 
p is a neighborhood of p in 𝐵!" ∪% 𝐵#".   

∪$ 
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There is another way to represent the 3-Sphere 𝕊", which is as the one-point compactification 

of R3.  This is illustrated in Fig. 2. 

 

Figure 2.  The 3-Sphere 𝕊" as the one-point compactification of R3.  
The point at infinity is designated as 𝑝&.  𝐵!" is a ball in R3 with the 
radius designated by the dashed line.  The ball 𝐵#" has its center at 𝑝& 
and is given by {𝑝&} ∪ (𝑅" − 𝐼𝑛𝑡𝐵!"), where Int means the interior.  
This means that the boundary of 𝐵!" is also the boundary of 𝐵#" 
(compare with Fig. 1).  The radius of 𝐵#" is {𝑝&} ∪ 𝑟′. 

 

If p is a point on the boundary of 𝐵#", since the boundary of 𝐵#" is also the boundary of 𝐵!" the 

neighborhood of p (an open set containing p) is both in 𝐵#" and 𝐵!"; i.e., a neighborhood of p in 

𝐵#" ∪$ 𝐵!".   

 

Additional insight into the 3-Sphere 𝕊" can be gotten from the Hopf fibration (or Hopf map), 

which can be viewed as a map h of 𝕊" onto 𝕊! such that each point on 𝕊! is mapped by h-1 to 

a distinct great circle on 𝕊".  Note that this mapping h is not a homeomorphism as it was above.  

This is shown in Fig. 3.  The Hopf mapping can be considered to be the projection of the Hopf 

bundle, the locally trivial fiber space whose total space 𝕊" has a base space 𝕊! and fiber 𝕊#.  

Note, however, that the sphere 𝕊" is not homeomorphic to the direct product 𝕊! × 𝕊# since the 

fundamental groups of these spaces are not isomorphic.   
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Figure 3.  The Hopf fibration h mapping two linked great circles on 𝕊" onto two points, P and 
Q, on the 2-Sphere 𝕊#.  This mapping is not a homeomorphism.  The inverse Hopf fibration, 
h-1, maps P and Q into the linked great circles on 𝕊".  [Adapted from D.W. Lyons, An 
Elementary Introduction to the Hopf Fibration] 

Perhaps counterintuitively, this shows that the great circles of 𝕊" are linked, which can be seen 

from some of the models of 𝕊".   

Separation of the Matter and Antimatter Universes from 𝕊" 

What is proposed here is the separation of the early 𝕊" universe into a matter and separate 

antimatter universe.  This would occur occurs at a time ~10-6s after the big bang at the end of 

the quark-baryon transition period and before quark confinement and baryon-antibaryon 

annihilation occurs in the conventional theory.  The time evolution in the matter and antimatter 

universes, while being opposite, continue to follow the usual laws of physics.  For example, 

particle and antiparticle pairs could still be created and the Feynman Stückelberg interpretation 

of an antiparticle as a particle moving backwards in time would still hold.   

 

This proposed separation of the universe into a matter and antimatter universe, just after the 

quark-baryon transition at ~10-6s after the big bang, preserves the CPT theorem and avoids the 

problems associated with the idea of breaking the baryon number symmetry.   

 

Boyle, Finn, and Turok2 have also proposed a separation of the universe into a matter and an 

antimatter universe.  They propose that the universe immediately after the big bang became a 

universe/anti-universe pair that directly emerges into the radiation-dominated era.  They reason 

that during the radiation-dominated era the metric is 𝑔%& ∝ 𝜏!𝜂%& where 𝜂%& is the Minkowski 
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metric and t  is the conformal time.  They then note that the metric has time reversal symmetry 

under 𝜏 → −𝜏.  This is the basis for their proposal that the universe is a universe/anti-universe 

pair that directly emerges after the big bang.  They also couple their theory with the Feynman-

Stückelberg interpreta,on of an,par,cles being par,cles moving backwards in ,me.3  This is 

very different from the proposal being made here that the division into a matter and antimatter 

universes is based on topological change at a time ~10-6s after the big bang at the end of the 

quark-baryon transition period. 

 

Figure 1 showed how the 3-Sphere can be illustrated as the union of two 3-Balls.  Now consider 

the reverse process where the inverse of the homeomorphism h is applied to the 3-Sphere.  This 

is shown in Fig. 4.  As an aside, it might be of interest that the 3-Sphere 𝕊" is the boundary of 

a closed 4-Ball B4.   
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Figure 4.  A 3-Sphere 𝕊" becomes two 3-Balls under the inverse of the homeomorphism h used in Fig. 1.  One 
dimension of the 3-Sphere is suppressed.  The 3-Balls are shaded to show that the interior points of the balls are 
included.   

The Separation of Baryons and Antibaryons 

The key questions for the proposal being made here are: Is topological change consistent with 

general relativity; and, how does the separation of quarks and antiquarks occur?   

 

With regard to topological change, Geroch4 showed that for any spacetime containing two 

separate spacelike hypersurfaces of different topology there would have to be either closed 
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timelike curves or singularities.  In addition, Tipler5 later showed that topology changing 

spacetimes are singular.  In 1991, however, Horowitz6 noted that the theorems of Geroch and 

Tipler basically showed that if a metric satisfies the Einstein field equation on a topologically 

changing manifold it cannot be well defined everywhere.  He showed that the points at which 

the metric is ill defined do not have strong curvature singularities.  To put it in his words, “The 

singularities can be very mild.  In fact, they can be so mild that in some sense they are not there 

at all!”  In particular, the curvature scalars are all finite and the curvature on the manifold does 

not diverge as one approaches the degenerate points. 

 

Without invoking quantum gravity, Borde7 found a way that classical general relativity can 

allow topological change and that is to eliminate the requirement that the foliation of spacetime 

into a series of spacelike hypersurfaces continues to exist as the topological change occurs.†  

He points out that there exit solutions to the Einstein field equations that do not admit a foliation 

of spacetime into spacelike hypersurfaces everywhere.   

 

The net result from this literature is that there is no compelling reason to exclude the type of 

topological change shown in Fig. 4.   

 

The quark-baryon transition occurs in some three phases8 related to a critical temperature TH, 

known as the Hagedorn temperature, corresponding to ~150 MeV per particle or a temperature 

exceeding 1.6 ´ 1012 oK.  For T slightly greater than TH forces between the components of the 

quark-gluon plasma continue to play some role, but for T >> TH, the quark-gluon plasma,9 

consisting of quarks, antiquarks, and gluons, behaves as an ideal gas where the components of 

 

† Note the comments in endnote 3. 
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the quark-gluon plasma are free from interactions and move independently.  This is the period 

during which the proposed topological change occurs.   

 

The issue of the mechanism for the separation of quarks and antiquarks into 𝐵#" and 𝐵!", just 

after the quark-hadron transition at ~10-6s after the big bang, remains to be explained.   

 

Consider the Feynman-Stückelberg conception of antiparticles.  Let x(t) be the path of a particle 

in Minkowski space so that 𝑑𝑥% = (𝑑𝑡, 𝑑𝒙(𝑡)).  Define the Lorentz-invariant quantity 

 𝑑𝜏! = 𝑑𝑥%(𝑡)𝑑𝑥%(𝑡).  Then 𝑑𝜏(𝑡) would represent a “length” along the path.  It is given by 

𝑑𝜏 = ±K𝑑𝑥%(𝑡)𝑑𝑥%(𝑡).  For 𝑑𝒙 = 0, the result is 𝑑𝜏 = ±𝑑𝑡.  Feynman and Stückelberg 

interpreted this to mean that for a particle moving along 𝑑𝜏 = −𝑑𝑡, in the opposite sense to the 

dt in our Lorentz frame, is an antiparticle.  Thus, the Feynman-Stückelberg conception of 

antiparticles arises in classical physics so that one has “classical antiparticles”.10  𝑑𝜏 = +𝑑𝑡 

corresponds to the forward light cone and 𝑑𝜏 = −𝑑𝑡 to the backward light cone.  This is shown 

in Fig. 5. 

 

Figure 5. The light cones corresponding to 𝑑𝜏 = +𝑑𝑡 and 𝑑𝜏 = −𝑑𝑡 at the points p1 
and p2.  ℇ' and ℇ'' are two events.  Both light cones correspond to legitimate Lorentz 
frames where time evolves in opposite directions.   
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In the Lorentz frame corresponding to 𝑑𝜏 = +𝑑𝑡, event ℇ' occurs before ℇ'' and in the frame 

corresponding to 𝑑𝜏 = −𝑑𝑡 it occurs after ℇ''.  What this shows is that both solutions to 𝑑𝜏 =

±K𝑑𝑥%(𝑡)𝑑𝑥%(𝑡) are equally valid definitions for the passage of proper time.  This is what 

convinced Feynman and Stückelberg that a particle evolving in either Lorentz frame viewed 

from the other frame is seen as an antiparticle.   

 

Return now to Fig. 4.		Just after quark-hadron transition at ~10-6s after the big bang is when 

the topological change shown in Fig. 4 is assumed to occur.  These two 3-Balls would represent 

two separate universes, one containing matter (corresponding to 𝜏 = +𝑑𝑡) and the other 

antimatter (corresponding to 𝜏 = −𝑑𝑡).  At the moment of topological change, there would be 

a separation of particles and antiparticles into the 3-Ball whose time flow matches the particle 

or antiparticle.  A particle moving forward in time in one 3-Ball would be viewed from the 

other 3-Ball as being an antiparticle.  In this way the mixture of matter and antimatter in 𝕊" 

would be separated by the proposed topological change into two universes one having matter 

and the other antimatter; and thereby saving CPT symmetry. 

 

Note, however, that these universes would have a boundary unlike the 3-Sphere they came 

from.  But from the first of Eqs. (1) this boundary would not be visible in the later universe as 

S(t) caused its expansion.   

 

The proposal above would preserve the CPT theorem, and it is important that CPT symmetry 

not be violated since it is this symmetry that implies that every particle has an antiparticle, that 

the mass of the particle and antiparticle is equal, and if the particle is unstable its lifetime is the 

same as its antiparticle.  If either C, P, or T is violated there will be a violation of one of the 

other two.  It has also been shown that if CPT invariance is violated in an interacting quantum 

field theory, then that theory also violates Lorentz invariance.11   
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Some Philosophical Comments 

The theory given above is obviously quite speculative.  Two separate universes are postulated, 

which both come into existence at the moment of topological change when particles and 

antiparticles are separated into two 3-Balls each having a time direction opposite to the other.  

Since the two universes, matter and antimatter, are disjoint and have no contact whatsoever, 

from a philosophical point of view, the theory is not falsifiable.   

 

The role of falsifiability is discussed extensively in Karl Popper’s book The Logic of Scientific 

Discovery.  In particular, if a theory is not falsifiable this does not mean it is wrong.  As Popper 

put it, “Falsifiability separates two kinds of perfectly meaningful statements: the falsifiable and 

the non-falsifiable”.  He uses the concept of falsifiability as a “criterion for deciding whether 

or not a theoretical system belongs to empirical science”.   

 

With regard to their geometrical relationship, one cannot define a three-dimensional distance 

between the two universes and they could well be in the same place in 3-space since the distance 

between them is time-like.  As a result, it would not be possible to make any experimental 

observations in one of the 3-Ball universes that could confirm the existence of the other.  Thus, 

by Popper’s criterion, the theory given here does not belong to empirical science.  A couple of 

examples of other non-empirical theories that are currently being explored are string theory 

and multi-universe theory.   
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